{ "cells": [ { "cell_type": "markdown", "id": "9f8f826b-acab-4ce2-a04d-c44ef3d97223", "metadata": {}, "source": [ "# Downstream Analysis\n", "\n", "After performing all of the preprocessing with `spatialproteomics`, you typically want to use other packages to extract further information from the data. Here, we show two examples, one using `squidpy` and the other one using the R package `spatstat`. `Spatialproteomics` provides several ways to export your data to facilitate interoperability with external tools.\n", "\n", "If you want to follow along with this tutorial, you can download the data [here](https://oc.embl.de/index.php/s/XzEa9po1tjiDzzJ)." ] }, { "cell_type": "code", "execution_count": 1, "id": "cfa21d6e-492c-4e7f-9449-81c2ef3236c9", "metadata": { "tags": [] }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "/home/meyerben/meyerben/.conda/envs/tmp_env_3/lib/python3.10/site-packages/dask/dataframe/__init__.py:31: FutureWarning: The legacy Dask DataFrame implementation is deprecated and will be removed in a future version. Set the configuration option `dataframe.query-planning` to `True` or None to enable the new Dask Dataframe implementation and silence this warning.\n", " warnings.warn(\n" ] } ], "source": [ "import os\n", "import sys\n", "\n", "# setup for rpy2 to use the correct R binary\n", "env_r_bin = \"/g/huber/users/meyerben/.conda/envs/tmp_env_3/bin\"\n", "os.environ[\"PATH\"] = env_r_bin + os.pathsep + os.environ.get(\"PATH\", \"\")\n", "if \"R_HOME\" in os.environ:\n", " del os.environ[\"R_HOME\"]\n", "\n", "%load_ext rpy2.ipython\n", "\n", "import xarray as xr\n", "import spatialproteomics as sp\n", "import pandas as pd\n", "import squidpy as sq\n", "\n", "celltype_colors = {\n", " \"B cell\": \"#5799d1\",\n", " \"T cell\": \"#ebc850\",\n", " \"Myeloid cell\": \"#de6866\",\n", " \"Dendritic cell\": \"#4cbcbd\",\n", " \"Macrophage\": \"#bb7cb4\",\n", " \"Stromal cell\": \"#62b346\",\n", " \"Endothelial cell\": \"#bf997d\",\n", "}" ] }, { "cell_type": "code", "execution_count": 2, "id": "f998a188-d183-4add-a907-77f004ed987c", "metadata": { "tags": [] }, "outputs": [], "source": [ "# loading in a data set\n", "ds = xr.open_zarr(\"../../data/LN_24_1.zarr\")\n", "# for clearer visualizations, we set the cell types to the broadest level (B cells, T cells, ...)\n", "ds = ds.la.set_label_level(\"labels_0\", ignore_neighborhoods=True).la.set_label_colors(\n", " celltype_colors.keys(), celltype_colors.values()\n", ")" ] }, { "cell_type": "markdown", "id": "d99bcbbb-29ad-4f72-addd-7883f7988771", "metadata": {}, "source": [ "## Neighborhood Enrichment with Squidpy\n", "\n", "We can use the `pp.convert_to_anndata()` function to turn the `spatialproteomics` object into an `anndata` object that is accepted by `squidpy`. We can then follow the [squidpy documentation](https://squidpy.readthedocs.io) to perform an enrichment analysis." ] }, { "cell_type": "code", "execution_count": 3, "id": "8099175e-20c1-497d-9666-60e3ac05266e", "metadata": { "tags": [] }, "outputs": [ { "data": { "text/plain": [ "AnnData object with n_obs × n_vars = 18134 × 56\n", " obs: 'BCL-2_binarized', 'BCL-6_binarized', 'CD163_binarized', 'CD45RA_binarized', 'CD45RO_binarized', 'CD8_binarized', 'DAPI_binarized', 'FOXP3_binarized', 'Helios_binarized', 'ICOS_binarized', 'PD-1_binarized', 'TCF7-TCF1_binarized', 'Tim3_binarized', '_labels', '_neighborhoods', 'centroid-0', 'centroid-1', 'degree', 'diversity_index', 'homophily', 'inter_label_connectivity'\n", " uns: '_labels_colors'\n", " obsm: 'spatial'" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "adata = ds.tl.convert_to_anndata()\n", "adata" ] }, { "cell_type": "code", "execution_count": 4, "id": "d43abb55-6856-4463-9fd2-9dcb57278da4", "metadata": { "tags": [] }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "fd9925bbba5e48f2979a3e1187f15663", "version_major": 2, "version_minor": 0 }, "text/plain": [ " 0%| | 0/1000 [00:00" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "sq.gr.spatial_neighbors(adata, coord_type=\"generic\", radius=140)\n", "sq.gr.nhood_enrichment(adata, cluster_key=\"_labels\")\n", "sq.pl.nhood_enrichment(adata, cluster_key=\"_labels\")" ] }, { "cell_type": "markdown", "id": "2a2872c0-dab1-4df3-a194-43fa735a07fb", "metadata": {}, "source": [ "We see that in this sample, B cells frequently cluster together, while B and T cells have a negative enrichment score, meaning that the two do not mix very often." ] }, { "cell_type": "markdown", "id": "cfb3a86e-14df-4fda-9ee7-3b4a6d47c1be", "metadata": {}, "source": [ "## Downstream Analysis in R using spatstat\n", "\n", "R has a great analysis ecosystem for spatial data, hence it can be desirable to continue analysis with packages such as `spatstat`. Below we show how you can export your data in an R-friendly format and perform some basic analysis using the `spatstat package`." ] }, { "cell_type": "code", "execution_count": 5, "id": "10b29a9f-c1ff-4c7c-b61e-357a4d9f28cd", "metadata": { "tags": [] }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
centroid.0centroid.1labels
1343.0438251492.916335Endothelial cell
2341.7405061517.082278B cell
3342.2500001450.492857B cell
4345.1506021559.259036B cell
5346.4541281575.885321T cell
\n", "
" ], "text/plain": [ " centroid.0 centroid.1 labels\n", "1 343.043825 1492.916335 Endothelial cell\n", "2 341.740506 1517.082278 B cell\n", "3 342.250000 1450.492857 B cell\n", "4 345.150602 1559.259036 B cell\n", "5 346.454128 1575.885321 T cell" ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# getting the spatial information and cell types from the spatialproteomics object\n", "df = ds.pp.get_layer_as_df()[[\"centroid-0\", \"centroid-1\", \"_labels\"]]\n", "# renaming the columns for better compatibility with R\n", "df.columns = [\"centroid.0\", \"centroid.1\", \"labels\"]\n", "df.head()" ] }, { "cell_type": "markdown", "id": "4b0baaa0-3afa-446c-9572-26dad073a790", "metadata": {}, "source": [ "At this point, it is most sensible to store the data frame to disk using `df.to_csv('your_path.csv')`, and reading it in with R. For demonstration purposes, we run R directly in this notebook." ] }, { "cell_type": "code", "execution_count": 6, "id": "558867fa-9a28-4e98-bd6b-41d99a085ea7", "metadata": { "tags": [] }, "outputs": [], "source": [ "# send the python df to R, so that we can use it directly\n", "%R -i df" ] }, { "cell_type": "markdown", "id": "a65c483d-44f4-4d2a-90c4-204cf7c608f0", "metadata": {}, "source": [ "Let's have a look at how B cells are spatially distributed in this sample. We can do this by using Ripley's K function. We compute what this function would like like if our cells were randomly distributed, and then compute what it actually looks like. Subsequently, we can compare the two curves. Interpretation is simple: if our observed curve is above the theoretical one, there is clustering in the sample." ] }, { "cell_type": "code", "execution_count": 7, "id": "cbc6bb68-4f5e-42a7-a27e-91bb89ddce6c", "metadata": { "tags": [] }, "outputs": [ { "data": { "text/plain": [ "Loading required package: spatstat.data\n", "Loading required package: spatstat.univar\n", "spatstat.univar 3.1-4\n", "spatstat.geom 3.5-0\n", "Loading required package: spatstat.random\n", "spatstat.random 3.4-1\n", "Loading required package: nlme\n", "spatstat.explore 3.5-2\n", "number of data points exceeds 3000 - computing border correction estimate only\n", "In addition: Warning message:\n", "2 points were rejected as lying outside the specified window \n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAeAAAAHgCAIAAADytinCAAAgAElEQVR4nOzdeUBM6/8H8Gemadr3lSSULVHIvstS1iQlukTWkrgk25cs98qWiKxXidabrd2ebBGKdiJRSk3TvkyznN8f8/12+3VJas45s3xef9Vp5nze0/DpzHOe8xwKhmEIAACA8KGSHQAAAMD3QYMGAAAhBQ0aAACEFDRoAAAQUtCgAQBASEGDBgAAIQUNGgAAhBQ0aAAAEFLQoAEAQEhBgwYAACEFDRoAAIQUNGgAABBS0KABAEBIQYMGAAAhBQ0aAACEFDRoAAAQUtCgAQBASEGDBgAAIQUNGgAAhBQ0aAAAEFLQoAEAQEhBgwYAACEl5eXlRXYGQITExMTAwEAqlWpgYND5hxGMwWAEBQXdu3dPT09PTU0Nv0ICf/mEJe+Ylq9XON96CUcjOwAQmLt37z5+/Lj5Wzqdrq+vP3XqVF1dXYRQYmLinj17aDTa+PHj29hJOx/2XVeuXMnLy3NxcdHW1m5n2rFjx06ZMoW/paCgICAggEKhrF27tuUeuFzumDFj3r17p6Sk1K9fv549e/5qsJ/GVlVVnTVrFurcy/83QSVv9c4qKSn17NnTyspKTk6ukwlbvl7BvnYgGBgQF56env9+f+Xk5MLCwjAM43K5bDabx+O1vZPdu3cjhPbt29eBANbW1gihDx8+tD+tp6cn/9vPnz/z+5efn1+rR37+/BkhpKenx2azO5CqbU1NTaqqqqtXr+Z/287fUjsJKvl331ltbe2cnJxOJmz5dnfmrQc4gSNocePs7LxhwwaEUGNjY2hoqI+Pj4uLi729fVJSUmJi4uTJk8ePH88/Ips9e7a0tPTt27cVFRUXLVqkrKz87701NTXdunUrJydHXV3dxsZGTU3t/fv3wcHB+vr6zs7O/McEBwe/f//e1tZWSUkJIcTfD5PJjImJ+fr1q46OzuzZszU1NdvIXFhYOGnSpPz8fD8/v3Xr1rX80adPn3x8fPhJ9u/fb2dnl5eX9/r1a2trazMzM4RQWFhYTk7OokWL+vTpw39d8+fPl5GRiY6O5mdWUVHh74rNZkdHR797905XV3fWrFmamppZWVknTpyorKx8+fKll5fXzp07Hz9+3Pxb4j/r1q1baWlpNBpt1KhRo0eP5m9su9CPkhsbG/90h8XFxfxPIf/+La1bt27Hjh0IIQaDsX79+gcPHpw8edLPz6/Vw/79Mn/0VrbxjvzqOwjwQvZfCCAwrY5JMQxjsVgUCgUhVFlZ2fL4aOfOnQihyZMnd+vWzdDQECE0ePDg+vp67P8fRpWVlQ0YMIBCoZiYmMjJyenq6n78+LG6ulpBQUFWVra2thbDMC6Xq6mpSaPRvn37xm8rLBYrJSVFSUlJWlq6e/fuNBpNRUXl1atXP0pbVFRkZGSEvnfsjGHYs2fP9PT0EELS0tIGBgZxcXH8PwwBAQH8B8ydOxchFB0djWHYrl27EELLly/X1NRUVVVFCJmYmHA4HAzDamtr+Q1dXl6eQqGoqqomJyfHxcXx+46ioqKBgUFjY2PLl19fXz9jxgyEEJ1Ol5KSQgjZ29vzD67bKNRG8jZ2+J///AchtHjxYoSQnp7eT9/ZAwcOIIRWrVrV6pHffZk/eiuxHx9Bt+cdBASAWRzihslk5uTk5OTkpKWlbd++HcOw/v37tzq443eH/Pz87Ozs3Nzc8ePHp6amRkREtNrV7t27MzMzfX1909PTHz16VFJS4u3traSkZGdn19jYmJCQgBBKSUlhMBjTpk3T1tb29PRMTk6m0+mnT5+uqal58OBBQUHBmzdvhg8f/vLly++mLSkpmTx5cl5e3v79+1sdO/ONHDkyMTERIdSnT59Pnz5ZWVm18dr5f40SEhKysrIKCwt79eqVkZHBf/rRo0fT0tKWLVtWU1Nz8+bNysrKtWvXWllZHTt2DCG0ePHiT58+ycjItNzbsWPH4uLi5syZU11dXVpaamJiEh4eHhoa2nahNpK3sUMqlcrfYUpKSk5Ozndf3ePHj728vLy8vNavX+/t7d21a1f+R6WWvvsyf/RWtvGbbP87CHAFQxzi5vz58+fPn2/+tl+/fmFhYd995IIFCxQVFRFC1tbWSUlJz549W7p0acsH3LlzByGUmpq6detWhJCMjAy/KS9fvjwgIODGjRvz58+Pj49HCP32228Ioe7du3fv3h0hpKWlhRDatGmTvb392LFjExIS+A3o3y5dusT/UVxc3JYtW6SlpTv/G7C1teUHmDx58sePHz99+oQQio2N5SenUqmzZ8/Oy8v76X6uX7+OENqwYYOMjIyMjMzy5ct///33pKSkRYsWtVGoMzucN2+eubn5j57+5MmTJ0+e8L+WkpKaN2+erKxsq8f86GX+6K38kfa/gwBX0KDFzZgxY/jzIo4dO1ZTUxMaGjpo0KDvPpL/2RwhxD++ZjAYrR5QVVWFEPrw4UNxcTFCaOLEifwGOnbs2L59+8bGxnI4nPj4eCUlJf44Q7Pt27fn5+dfu3bt+fPnCCEjI6OwsLChQ4f+O0OfPn0iIyNdXV0fPXrk7u7u7+/fuVeP0P+aC0JIQUEBIcRmsxFCX758QQhpaGjwf8Qf2GlbUVERQkhHR4f/Lf+Lr1+/tl2oMzvs1q1bG09fv349fySksbExKipq3bp1d+7ceffunby8fPNjfvQyf/RW/kj730GAK/irKG7Gjh3L/yC8c+dODMNcXV0xDPvuI/n9AiFUUlKCWrSbZvzD4cOHDyf8T3R0NP9Hy5cvr6ioiIyMfPnypa2tbav5XsrKyuHh4UwmMy4ubvXq1Xl5eevXr/9uhnnz5g0cODAiIkJXV/f06dMBAQE/fYE0Gg0h1NjY2DL8T/G7YVlZGf/bhw8f3r17l8vltvEUfX19hBC/ozV/wf+ddMxPd8gfevoROTk5TU1NTU3Nbt26ubi46OnpFRUVZWZmtnzMj15mG2/ld7X/HQS4ggYtttzd3Y2MjJ4+fXrx4sXvPuDq1aslJSX8o2yE0JgxY1o9YNSoUQihCxcuIISysrJGjhzJn0WAEFq6dCmNRvPw8ODxePzxjZbWrVtnYWHB4/GsrKwOHjwoJydXXV3dRlRdXd2IiAgajbZ27dqUlJS2Xxf/MDMuLg4h9OLFi58+nm/69On814Jh2JMnTyZOnOjm5iYlJcVv94WFhf9+yrx58xBCJ0+e5HK5TCaT/8eDP5WwYzq5w7q6upKSkpKSki9fvpw7d66oqIhKpfLPQ/70ZbbxVn7Xr76DACfQoMUWnU4/cuQIQsjT07O8vPzfDzAzMzM0NNTW1s7IyBg+fPiCBQtaPWDnzp2DBg26cOGCurq6iYlJbm5uczfR0dGZOXNmYWGhvr7+xIkTWz1x6NChiYmJenp6vXv35s8CbrsdIITGjRvn7e3NYrHmz5/ffAD4XY6OjqqqqtHR0V27drWzs5s9ezZC6EefEpp5enoOGzbs8uXLKioq48ePV1VV5Y/Um5mZUanU2NhYFRWVgoKClk/ZsGGDlZXVjRs3VFRUdHR0srKyPDw8mi+r6YBO7vDkyZNdunTp0qVL9+7dV69eLSUldfLkya5du7bnZbbxVn5XB95BgAcYgxYfU6ZMkZWVHTt2bPOWuXPnHjt2rLKyMjc3l99GW14kNnbsWG9v74SEBA0NjUWLFvHnMLR8mLa29suXL2NiYvLy8rS1tWfNmtU8uIkQMjc3v3nzpqOjI39KQ0vLli0bN27cnTt3KioqtLW1p0+fzv9033baTZs2SUtLM5nMV69eWVpaNm9XV1ffvXt387WFPXr0eP36dWxsLJVKXbBgwevXr83MzPgT9Vq9RktLS1VVVf5pNzU1tadPn16/fj0vL69r164zZszgD+n069cvMTHx8ePHWlpaOjo6LfcgKysbFxcXHx//5s0bOp0+adKkwYMH8/fcRqGWWiVv/w6/+7tq/lZaWrpLly6WlpatunMbL/NHb2XLui2/bs87CAhA+emhBxA/Xl5ee/bs2bdvH39C9K9is9kFBQXjx49nMBgfPnyA/7oA4ASGOMAvmzp1au/evYuLi3fu3AndGQD8wBCHJGr7A/VPubm5WVpampubd2ZAFgDwUzDEAQAAQgqGOAAAQEhBgwYAACEFDRoAAIQUNGgAABBS0KABAEBIQYMGAAAhBQ0aAACEFDRoAAAQUtCgAQBASEGDBgAAIQUNGgAAhBQ0aAAAEFLQoAEAQEhBgwYAACEFDRoAAIQUNGgAABBS0KABAEBIQYMGAAAhBQ0aAACElIjdNJbBYDx48IDsFAAA8F9UKnXOnDnS0tJ47FzEGvT9+/dv3rw5YcIEsoMAAABCCAUFBZmZmRkaGuKxcxFr0AihMWPGrFq1iuwUAACAEEIvXrzAb+cwBg0AAEIKGjQAAAgpaNAAACCkoEEDAICQggYNAABCCho0AAAIKWjQAAAgpKBBAwCAkIIGDQAAQgoaNAAACClo0AAA8P/U1NTcv3+f7BQIQYMGAICWqqqq5s+fz+VyyQ6CEDRoAABoxuPxHBwcPDw8pk6dSnYWhKBBAwBAs717906dOlVIujMSxeVGAQAAD/fu3cvIyPj777/JDvIPCWrQM2fObGpqIjuF8Kqvr7eystq5cyfZQQAgQWVl5c6dO+Pi4igUCtlZ/iFBDbq+vh5ul9WGV69ehYaGkp0CABJUVlbOmzfv4MGDampqZGf5f2AMGgAg0RoaGuzt7Xfv3j1+/Hiys7QGDRoAILkwDFu2bNmqVasmTpxIdpbvgAYNAJBcW7ZsMTMzmz9/PtlBvk+CxqABAKCl0NDQurq6w4cPkx3kh6BBAwAk0cePH0+fPn379m2yg7QFhjgAABKnqalp+fLl586dk5WVJTtLW6BBAwAkzrZt25ycnPr160d2kJ+ABg0AkCyXLl2qrKx0cnIiO8jPwRg0AECC3Lt3LzIy8tq1a2QHaReiGzSGYSUlJWpqakI+9AMAED/R0dGHDx+OioqSlpYmO0u7EDHEERIS4u3tjRC6du2ajo6OkZGRoqLiwoULGxsbCagutD5//qytre3u7k52EAAkwt9//x0YGJiQkKCqqkp2lvbCvUGXlpauX79+xowZDQ0Na9as+fvvv+vq6phMJpVK5XdtiXXo0KFTp049fPiwtLSU7CwAiLm8vDw/P78rV67Iy8uTneUX4N6gP378OGDAgEGDBn358sXU1HTChAkIIWVlZVdX15SUFLyrC61v374lJSXNnz/fxcXFx8dHsDv38fHJy8v77o8OHTr06dMnwZYDQMixWKwVK1acO3dOTk6O7Cy/BvcGbWxs/O7du6SkJENDw8bGxm/fviGEmpqa/vrrL2NjY7yrC62jR4+uW7eOSqUuXbr02rVrFRUVgtpzfHz84cOH9fX1v/vTgoKCXbt2CaoWAMKPx+MtW7ZszZo1wj+p7t9wb9DKysohISFOTk6DBw9uamrq3bu3ubl5165dS0pKJHnp4S5duixduhQhJCMjc+zYsYKCAkHted++fWvXrpWRkfnuT93d3UNCQvLz8wVVDgAht3379mHDhi1cuJDsIB1BxCyOSZMmffjwIS0t7d27d42NjZqamv369TM0NCSgtHCKj48fMGBAcw8tKyurr683MzPr/J6zs7OfPXsWGBj4owf06dNn0KBBgYGBe/bs6Xw5AIRcXFxcUVGR6J7uImiaHYVCMTQ0pNPpHA5HXV39Rx/AJYSfn9/s2bMRQhiGbdiw4cWLF7GxsQLZc2RkpKGhYZ8+fdp4jJWVVWRkJDRoIPYyMzO9vb1jYmLIDtJxREyzS05OHjlypKampqWlpbW1tYmJia6u7v79+3k8HgHVhVB6evqgQYPYbLajo+O7d+/u3bunrq4ukD0/ffp0yJAhLbf4+vrm5eUdOXKkrq6Ov2XYsGHZ2dlMJlMgFQEQTrW1tatXrw4KClJWViY7S8fhfgRdV1dnbW3t6+trY2NDp9P5G7Ozs1euXKmoqLhhwwa8A7SfnZ1dZ07WUanUQ4cOmZqatv2wysrKoqKiXr16zZkzR01NTbBz5t+/f29tbd38LZvN3rZtW3p6+tixY5tnFxkYGGAY9v79+xEjRgiqLgBCBcMwZ2fnrVu39ujRg+wsnYJ7g87JyTE2Nm41Qt+/f/+9e/eeOHFCqBp0REQEAVXevn2rra1tb2+PYZjA71DJZDJbTsLPy8vjcrl79uzp1q1b80b+A+AIGoixPXv2mJqazpo1i+wgnYX7EIeenl5ubi5/dl1L9+/f7969O97VhVB6enpDQ4ONjU16enpqamrLH+3atevp06cd2OHvv//O/1pOTq7l9Zlv374dP358y+6MEOI/QOQmhALQTpcvX/706dO2bdvIDiIAuB9B6+rq8mcgWlhYdO/enUajVVZWpqSksFisW7du4V1dCKWnp7u5uW3YsIF/M7SXL182D3FkZmZu3LjxV3eYk5MzYMAA/tc6Ojrl5eUtaw0dOrTV4xkMBkJIV1e3gy8AACH24sWL4ODg6OhowX42JQsRJwn/85//pKWlWVlZqaio0On0vn37Hj16ND09XTLncrx9+3bgwIEIIXd3d1lZ2T///LP5R58/f967d6+FhUXzpI6jR48uX77c2to6LS0NIfT169fx48e7urpyudyPHz9aW1u7uLiEh4c3N+ihQ4emp6c375B/NvLfAZSVldue6QGAKGIwGBs2bLh06ZKorIX0cxiBSkpKoqKiOrOH8PDwU6dOdey5EydO7ExpgeDxeEpKSllZWfxv3759q6Cg8PbtWwzDGhoa+vbt29TUlJubu3jxYgzDMjIyfvvtN/7DVq9ejWHYvXv3nJ2d+c9dsmQJfz8mJiZVVVX8jSEhIQoKCg0NDfxve/Towd95S4sWLZozZ86/s718+XLTpk2CfsUAEITD4cydO/fhw4cE13V2ds7Ly8Np54Qu2J+fn3/q1CkiKwqbhoaGTZs2NR+9Dhw48OLFi+/fv0cIZWdnW1lZSUtL19TU8M/j3b9/v/ksB//zWnp6On8CNUIoNze3f//+CCEtLa3miUTW1tZSUlLx8fHof/eTb3V5K4vFiomJ4V/ECIA42bx589SpU8ePH092EEGCO6oQSl5efvfu3VJSUs1b7OzsbGxsEEKZmZn8mXD37t2zsLBACMnKyrLZbIRQdHT09OnTEUIZGRn84RGEEH8WeUZGRvPkRYSQnJzcypUrL168iBCiUCi7du1q9Vnv2rVrampqzV0eAPEQExPDYDBcXV3JDiJgBF1J6OnpefXqVRaLxWQyjYyMEEIjRowIDg5u4ykRERGHDh1qtfHr16/m5uYuLi44ZiXJ27dv2Wz26tWr2Wz25s2bEUK2trbLly9PTExUU1ObO3cuQujTp089e/bkP3706NEODg6Kioqt1pzaunWroaFhRkaGiYnJv6scOnTo310bAJGWlZV16NChuLg4soPgAKehk+969uzZ9OnTO7OHDRs28GcQd4AwjEELMxiDBqKourp69OjRnz59IiuA+IxBAwCAYK1evXrnzp0GBgZkB8EFoQ26V69e69evJ7IiAECM/fnnn4aGhlZWVmQHwQuhN43V1taeOHEig8HQ1NQksi4AQPzwZ0DxT4mLK+KOoJOTk0eMGKGoqLhixQoMw2bOnAn34gMAdExycnJERMT58+fF44rBHyGoQVdVVdnb2+/Zsyc5ORkhRKFQJk+efPDgQWKqSwgmk7l3796mpqZ//+jbt2/79+/ncDjEpwJA4CoqKjZu3BgUFESjEToGQDyCGnR2dva4ceMsLS2bJ+3OmTMnOzubmOoS4uDBg6mpqS2nRTfT1tYOCwsLCgoiPhUAAufi4rJnzx5tbW2yg+COoAZtYGDw6tWr6urq5i0PHjxontILOq+iouLkyZM/WmuJQqGsX7/+jz/+wDCM4GAACJaXl1efPn2mTZtGdhAiEPQBoUuXLra2tkZGRv379//48aOFhUVeXt7jx4+JqS5UsrOzHz16tGrVKv63Dx48SEtLc3Nz6+SHtdDQUDU1tXHjxv3oAfPnz3d1dU1MTJw0aVJnCgFAoujo6IKCgoCAALKDEIS4EZx9+/bNnz8/KSmJw+H07NnTyspKVlaWsOrCIzo6+tWrV/wGHRoa6unpGRUV1fmhtKtXr1paWrZxwkRDQ2P48OGRkZHQoIGIKigoOHDgQEJCAtlBiEPoELuZmVnzvavZbDaTyRTUvfhESPMSoCdPnvT19b1//z7/2vfO4HK5L168mD9/fvOWysrKy5cvjxs37sWLF81H68OGDXvw4EEnawFACgzDVq9effbsWZG+x+CvIu1KwlevXvEXCZI06enppqamu3fvPnfu3KNHjzrfnRFCxcXFtbW1Le9Q8+bNm5MnT548ebLlPdkMDAzevXvX+XIAEG///v0WFhbNi4VJCNyPoNlsdlVV1b+3f3ej2ONwODk5OZcuXUpISCgoKBDUBwj+DQZb3o0wKyuLTqefO3eOSv3nb7CqqmpjY2NDQwPc7wqIluDg4Nzc3MuXL5MdhGi4N+hnz55NmDCh5QKbzcaOHYt39V/C8A/GGhoRQjK9eyjPsejwljbk5uY2NTUZGhoaGhpeuXLlVy9853A4mzZtOn78eKvt/Ibb6m6E9vb2Lbsz/wFUKlVGRuaXigJArjt37oSEhFy/fl28r0n5Ltwb9OjRo8eNG+fl5TV58uSW25OTk7du3Yp39V+ivmw+4vEQQpT/rcbZsS1tSE9PHz16tLe3t62trYWFxaxZs3r16tX+hDQa7d/dGSGko6ODEGp1N8I5c+a0ehiDwdDS0mrVtQEQZi9fvty3b19MTMx3J/iLPdz/r9JotODgYG9v75aToIUTVU6WqiBPVZCn0KU7s6UNzTckNDc3X7FixcqVK1tOTB4xYsSePXscHBz456nZbPaqVatWr15tY2NTW1uLEAoPDz9//jxCKDY21sHBwdbW9vTp0wghZWVlIyOjlncjzMjI+O7dCM3NzTv42wGAcPX19W5ubn///bdEnRhsiYiDKX19/du3b7f6FZubm9+8eZOA6kKl5V1c9+3bl5+ff+7cOf63jY2NPB5v165dXl5eYWFhCKHz58+PHDny7NmzkyZNiomJQQg1L8N/8+bNDRs2REZGTpkyhf/0yZMnP3v2jP91QUGBlJSUnp5ey9IYhj179ox/rxYARIKnp+fGjRv5HxAlE2mfdmk0moqKClnVyWJlZdV8BZS8vHxYWFh9fT3/2+zs7ClTplAoFCaTyf/N3Lt3r9U9CTMzM/k38Pby8rpw4cKCBQuaf4dLlix5+PAhg8FACGEY5u3t3ap0cnLyt2/fFi1ahPuLBEAQDhw4QKVS7ezsyA5CJhiOJJSLi4uhoWHzt8OHD2++ODsjI4N/J6p79+7xj4ub70mYkJDAH8Gvrq5WVlZmsVgsFuv8+fMLFiy4evUq/+ljxowZPHjwpUuXEEI9evRYuXJlq9KBgYF2dnaSfDACREhERERubq6vry/ZQUgm5mtBiZDMzEwWi7VmzRoWi7Vjxw6E0IYNG1xcXNTU1Ozs7LS0tBobG/l3leXxeJs3b9bS0mIymYcPH27ew/79+52dnd3c3P59OqWkpCQ4ODg1NZXIVwRAxzx58uT8+fNRUVESOG2jFWjQwiInJycsLKzl5e/Dhg1rOUwvKysbFRWFEJKTk2s+cG5p+vTphYWF3925rq4u/zQjAEKusLBw8+bN0dHRMFsfwRCH8Kirq5PMxUkAaMZisZYsWXLmzBm46RIfNGhhcefOHbIjAEAmDMNWrly5YsUKU1NTsrMIC2jQAAChsHfv3r59+8JEo5ZgDBoAQL7AwMD8/HzJWei5naBBAwBIlpSUdPXq1WvXrsG0jVagQQMAyMRgMDw9PaOjo6XbsZqNpIExaAAAadhstqOj49GjR2HaxndBgwYAkIPH4zk7Ozs4OIwePZrsLEJKgoY4eDzex48fyU4hvIqKisiOACTLxo0bhw4dunTpUrKDCC8JatBz5sw5ePAg2SmEWvPaTADgLTg4mMViubu7kx1EqElQg960aRPZEQAACCGUlpZ28eLFuLg4soMIOwlq0AAAYVBeXu7i4hIeHg53X/spOEkIACBORUWFjY3NkSNH9PX1yc4iAqBBAwAIwuVylyxZ4uXlBdM22gkaNACAIDt27JgyZcqkSZPIDiIyoEEDAIgQEBDAZDJh2sYvgZOEAADcpaamhoaGxsbGkh1ExECDBgDgq6qqat26daGhobDaxq+CIQ4AAI4aGhrs7Oz27dvXvXt3srOIHqKPoNPS0tLS0rS1tadMmfLve5sCAMQJm822t7dfu3Yt/7b04FfhfgT9+PFjW1tb/tc7duyYNGlSeHi4h4eHiYlJWVkZ3tUBACRyc3ObO3eutbU12UFEFe4NmsPh8O8nXVZW5u/vn56eHh8fn5mZOXfuXFgZAwAx5u/vr6Cg4OzsTHYQEUbcGHRZWZmpqWm3bt3431pbW+fk5BBWHQBApFu3biUkJBw6dIjsIKKNiAZdU1OTm5urpKTEYDBKS0v5G6Oionr16kVAdQAAwTIyMv7444+QkBApKSmys4g23E8SqqqqslismTNnVlVVVVVVxcXFOTk5HTp0KCIiIjExEe/qAACCffz4ceXKlREREYqKimRnEXm4N2gzM7OXL182f8vj8RBCS5cudXd3h7WsABAzNTU1v/3226VLl2AtJIEgaJpdRUXFo0ePvnz5wuFw1NXVzc3NdXR0iCkNACAGh8NxcnLasWNHnz59yM4iJoho0KdOndq5c6epqam+vj6NRmMymZ6ensbGxhEREerq6gQEAAAQYPv27ZMnT54xYwbZQcQH7g26rKxs//79qampPXr0aN7I4/FcXFwOHjwIM+0AEA+hoaGlpaUwbUOwcJ/FUVBQYGxs3LI7I4SoVOrChQuzs7Pxrg4AIMCDBw8uX7589uxZsoOIG9wbdN++fS/iL8EAACAASURBVDMyMuLj4zEMa97IZDKPHTs2bNgwvKsDAPBWXFy8Y8eOkJAQOO0vcLgPcSgpKQUFBbm6ulZVVfHHoCsrK79+/bpo0SIPDw+8qwMAcFVbW+vo6Hj8+HFVVVWys4ghIk4STp8+PS8v78OHD4WFhWw2W01NrX///vLy8gSUBgDgh8vlOjg4eHh4wKdhnBB3qbehoWHXrl2fP38+dOhQ6M4AiIEtW7ZYWlpaWlqSHURsEboedHl5+aNHj4isCADAia+vL5fLdXV1JTuIOCPoQpXPnz8zmcz379/X1NSkpaUhhBQVFY2MjNp4CpvN5i+D1xKLxWp5shEAQIq4uLikpKTIyEiyg4g5ghp0dHT0gwcPmEzmhw8f9u/fjxAaMGDAnj172nhKfHz8lStXWm1MS0uD+zIAQK709PSDBw/GxsZSqXBLJnxRiDwgTU5O9vLySkhI6PAeNm7cWFxcHBYWJsBUAID2Ky4utrGxiYiIgNU2+FasWLFt2zZDQ0M8dg5/AAEA7VVZWWlnZ+fv7w/dmRiENmgzM7MLFy4QWREAICg8Hs/JycnLy2vw4MFkZ5EUhDbohoaGt2/f8peBrqmpIbI0AKCTdu7cOWnSJAsLC7KD4IvX0Fh18y7ZKf6LuAbt7+/fu3fv7du3+/r6Yhhmbm7On84BABB+V69e/fLli7u7O9lBcIZh5f7B9O5dyc7xXwQ16KKiIh8fn9zc3MDAQIQQhUI5cuTI8ePHiakOAOiM5OTkM2fOnD9/nuwguKu8mkA3NJAbbEx2kP8iaJpdUVHRqFGjNDQ0vnz5wt9iZGRUVlZGTHUAQIcVFhZu3LgxOjpaVlaW7Cy4kx3QR7afEN0rlaAj6H79+iUlJT19+pT/LYvF8vPzg+v3ARBydXV1ixcvPnPmjKamJtlZiCDb3xBRKGSn+AdBDVpZWdnPz8/GxmbMmDG3bt1SV1cvKyvbsmULMdUBAB3A4/GWLl26efNmU1NTsrPgi9fQWLLrOOLxyA7SGkFDHAihOXPmWFpa5uTkcDgcAwMDDQ0NwkoDADrg999/Hz9+/OzZs8kOgjMMY/gFqcyfjoTvwkiCApWVlX348IFOpw8aNKipqenWrVvNg9EAACF0/PhxCoWyfv16soPgrub2Y9l+hnKm/cgO8h1ENOh9+/bp6+ubm5tPmzbNz89v8eLFFy9eNDU1TU1NJaA6AOBXnTlzJiUl5ejRo2QHIYLilNHKc4R0cjfuDfrbt29Xrlz5+vVrRUXFmDFj/P39s7Ky7t69e+bMGX9/f7yrAwB+1bVr1xITEy9duiT2ayFxSst5dfUUKSmyg/wQ7m/A58+fzc3N1dXVEULTpk3r1asX/8ZlZmZmX79+xbs6AOCX5Obm+vr6BgQESAlx2xIIXk1dmW8g1sQmO0hbcG/QvXv3Tk5OTk1NLSkpOXPmzMePH/l9+caNG71798a7OgCg/SorK5cvXx4QECAnJ0d2FnxhXF7ZiUtqS6yl1FTIztIW3GdxqKqq7t+/f/r06dXV1StWrDhx4oSJiQmdTpeTk3v48CHe1QEA7cThcBwdHf/44w+cVs4UKuzPXxXGmsv2E/ZXSsQ0OwcHBwcHBwzDKBQKQigvL+/Lly/9+vWDm7QDIDzc3Nzmzp07ceJEsoMQgd6zG71nN7JT/Bxx86Ap/7s+R11dnT8kDQAQEhcvXpSVlV25ciXZQXDHyv3Iq2uQGzKA7CDtIuZnaQEAP5WcnBwWFnbo0CGyg+COw6hgBl6jGxmQHaS9iDuCBgAIoaysrE2bNt28eVNaWprsLPjC2GzG8UBNl8VSyopkZ2kvaNAASK4vX76sWLEiNDRUMtZCoqg720nrdyE7xi+AIQ4AJNSHDx/s7OzOnz9vYCAyH/k7DONyKdI0eg89soP8GmjQAEgiBoPh6OgYFBQ0YIBonC7rjLonryvDY8lO0RHQoAGQOGw229HR8ejRo5JwsRjrw+eau49VF1iRHaQjoEEDIHE8PDwWLFgwevRosoMQoTI0Wst9GUU0T4HCSUIAJEtwcHB9fb2zszPZQQiis9OV7AgdB0fQAEiQ6OjoiIgIPz8/soPgD8MaXmWQHaKzoEEDICnevXt38ODBkJAQSVhloSIspqnoG9kpOgsaNAASoby83MnJKSgoSEFBgewsuKt9+IJbUa0irMvwtx80aADEX0NDg729/eHDh3v16kV2FkLweBqrFpIdQgDgJCEAYo7H4zk6Orq6uo4ZM4bsLARRnDSS7AiCAUfQAIi5Xbt2jR07dt68eWQHwR2vvoFx4hLZKQQJGjQA4uz69esFBQUbN24kOwjuMC6vzDdQcdIosoMIEgxxACC2MjMzfX194+PjyQ5ChMqwGIURZrID+5AdRJCgQQMgnhgMxsqVK0NDQ+Xl5cnOQgSVeVOp8uJ2K0UY4gBADNXX19vb2x85ckQSVqpjF31DGCZ+3RlBgwZA/HC5XAcHB3d3d0lYbYOVV1B+PhxhGNlBcAENGgBx4+7ubmlpOWfOHLKD4I5TWs68GKm1cRmiimcrE89XBYDE8vHxUVBQWLt2LdlBiNCYlafpslhKRYnsIHiBk4QAiI/w8HD+HWDJDkIQxYkjyI6AL6KPoNPS0gIDA+Pi4pqamgguDYB4S0xMDAgIuHz5MlVMP+//A8MqrtzkNTSSnQN3uL+Rjx8/trW15X+9Y8eOSZMmhYeHe3h4mJiYlJWV4V0dAAnx6dOnHTt2hIWFScJKdZV/x1Nk6FQ5WbKD4A73Bs3hcGpraxFCZWVl/v7+6enp8fHxmZmZc+fOPXjwIN7VAZAENTU1S5cuPX/+vKqqKtlZcFf3LJVTxlS1tSQ7CBGI+yhUVlZmamrarVs3/rfW1tY5OTmEVQdAXNXX19va2u7cudPY2JjsLESQ7W+ksWYRolDIDkIEIhp0TU1Nbm6ukpISg8EoLS3lb4yKipKUlQ8BwA1/pToXF5epU6eSnQV3nPJKjMOVUlWiSIn7IPv/4P46VVVVWSzWzJkzhwwZ8u7du7i4OITQoUOHIiIiNm3ahHd1AMSbp6fnhAkT5s6dS3YQ3HHKK8uOXMAaWWQHIRTu0+zMzMxevnzZ/C2Px0MILV261N3dXRLOZgCAn3PnztXX17u7u5MdBHe8hkaGb4DGageqokSsK9KMoHnQFRUVjx49+vLlC4fDUVdXNzc319HRIaY0AGLp1q1bUVFRN27cIDsIERrf5Kjaz6T30CM7CNGIaNCnTp3auXOnqampvr4+jUZjMpmenp7GxsYRERHq6uoEBABAzDx+/PjgwYM3b96k0STiWjP5kWZkRyAH7u9uWVnZ/v37U1NTe/To0byRx+O5uLgcPHgQZtoB8KvevXu3ZcuWmJgYJSWxvcS5WWVkguKkkTQN8Z8++F24nyQsKCgwNjZu2Z0RQlQqdeHChdnZ2XhXB0DMlJaWOjk5BQcHS8Knz5qEJG5FlcR2Z0RAg+7bt29GRkZ8fDzWYj1AJpN57NixYcOG4V0dAHFSWVm5YMECX1/fnj17kp0Fdw2vMxuz8jRW2JEdhEy4D3EoKSkFBQW5urpWVVXxx6ArKyu/fv26aNEiDw8PvKsDIDYaGhrs7Oz27NkzfPhwsrMQgd7bQHNgXwm5IOVHiDjDMH369Ly8vA8fPhQWFrLZbDU1tf79+0vIbXgAEAgul/vbb7+tWbNm4sSJZGfBHYdRIaWiKKWkSHYQ8hF3QY6hoWHXrl2fP38+dOhQ6M4A/BJ3d/dJkybZ2NiQHQR3nNLyMp+LGItNdhChQOgVk+Xl5Y8ePSKyIgBiYM+ePaqqqq6urmQHwR23prbsxCVNV0dJuyDlRwiaRPn582cmk/n+/fuampq0tDSEkKKiopGRURtPKSsr+/z5c6uN3759Y7PhTyuQIBcvXvzy5cuFCxfIDkIEVk6+utN8aT24iu2/CGrQ0dHRDx48YDKZHz582L9/P0JowIABe/bsaeMp2dnZ/IU7Wnr//r2GhgaOQQEQJrGxsTdv3oyMjCQ7CEHkhw0kO4KQ+fbt27Fjx2bOnKmtrU2hUBBCcnJypqamLi4u9+7d4/F4mOA8e/Zs+vTpndnDhg0b7O3tBZUHAGH24sWLSZMm1dbWkh0Efzwe41wYp6qG7Bwd4ezsnJeXh9POaXp6erq6uqNGjXJzc9PU1JSRkamsrPz06dPLly/PnTunr6+/Y8eOpUuXSsgVpQAIiaysrA0bNly/fl1BQYHsLLhjBkRKd9GSUoZpG63RHj16NHLkyO/+jMlkXr169dixY8XFxTt37ux8MTMzMwkZSgOgM5hM5ooVK0JCQrS1tcnOgruau08oMjLKsyaTHUQY0X7UnRFC6urqK1euXLFiRfMq+53U0NDw9u3bvLy8iRMn1tTUSMJKAgD8qtraWjs7u0OHDrVaIEFcKU4YQZGGD+jf9/NpdhQKRSBLg/r7+/fu3Xv79u2+vr4Yhpmbm/OncwAAmjU1Ndnb22/atGns2LFkZ8FdY/YHjM2G7tyGfxq0t7c3fmWKiop8fHxyc3MDAwMRQhQK5ciRI8ePH8evIgAiB8Ow5cuXL1y40MrKiuwsuGtIzaq6dgtRpcgOItT+adDx8fHV1dU4lSkqKho1alTLGXJGRkZlZWU4lQNAFG3evHnQoEG//fYb2UFwx8r9WBV1V2uTs+TcXbBj/vntdOvWbfLkyRcvXszPzxd4mX79+iUlJT19+pT/LYvF8vPzg9XsAGjm7e0tLS29ZcsWsoMQgVfXoL1pBVUWbnr3E/+M/owePVpNTS0oKMjDw4PD4QwcOHDQoEH+/v4CKaOsrOzn52djY1NTU8Pj8dTV1WfMmHH06FGB7BwAUXfs2LHc3NyLFy+SHYQgckMGkB1BNPzToFte6V9UVJSenv727VsBVpozZ46lpWVOTg6HwzEwMIALAgHgi4iIePny5ZUrVyjivrQmh1HB8A3U3bdBwhcRbb/vnz/V09PT09OztLQUVJnGxkZZWVk6nU6lUnNzcxkMxoQJE+Cu3gAkJSVduHAhKipK7Lszt6qm7FiAxuqF0J3b7ycTXOrr6y9cuCAvL79ixYoO13B1daVSqX5+flu3br1w4cLw4cNLS0sZDMajR4/09fU7vFsARN2rV6927NgRFRUlKytLdhbcVUffV182n969K9lBRAnNzMzM1tZ21KhRJiYmGhoaNBqttra2oKDg9evXCQkJUVFRAwYM6MxIdF5eXlRUVG5uLpPJDAoKevfuHf9eagcPHjxw4ICgxrgBEDmFhYXr1q27ceOGmpoa2VmIoOY4l+wIoodqZ2d3+fLlKVOm6OrqSktL02g0JSUlExOTVatWsdnsyMjI5OTkIUOGdLhARUWFvr6+vLx8dXW1sbFx850uR44c+enTJ8G8CABETUlJib29/blz5wRyFZgww9jsysgEslOIKtr27du3b99eVFT06tWrkpKSxsZGdXX13r17Dx48mE6nd77A4MGDKyoq9u7d6+rqqq2tHR8fP27cuNzc3C1btjg6OnZ+/wCIHP7F3H5+fgMHivnqmhiXW3YsQGEcTKjtoP+OQfPPCuJSgEa7d+/e9u3bjYyM2Gx2aGgoQqhbt25ubm7r1q3DoyIAwozFYi1atGjbtm2d+WAqKsrPhMoPN1UYNZjsIKKKhhAqLS3FddGsrl278q/w/vbtW2Njo5aWFtyTEEimpqamefPmOTk5ScLF3AghVfuZNE2JGGHHCRUhZGVl9d2LvJlMpmCL6ejoGBgYQHcGkonH4y1fvnzx4sV2dnZkZ8EZhjXlFyKEoDt3EhUhNG3atLlz57JYrJY/uHr1qrGxMUmpABBDW7ZsGTx48OLFi8kOgjvmpWsNb3LITiEOqAihAwcOGBoaOjg4cLlchFBpaemCBQtcXV1htTkABMXb25vL5W7atInsILirCImi0Okq1lPIDiIO/rtY0tmzZxFCa9asCQkJGTBggKKiYnZ2tr29PanZABATvr6+Hz9+9PHxITsI/jCMpqWhtmg22TnEBA0h1NTURKfTQ0NDLS0tb9y4ERYWZmFhQXYwAMREaGjoq1evLl26JPYXcyOEEIWiNHUM2SHEBw0hpKio2K9fv0GDBo0fPz4zM5NKhRVaARCM2NjYy5cvX79+Xez/W1XH3EcIwa0FBYuGEHr//j1/7br09HRtbe1p06YpKyvzlxs9ceIE2QkBEFWxsbHHjx+/fv262K8LVh33sOlzsebaRWQHETc0hJCBgYGBgcGsWbP4m5qamrKzswW+3CgAEuX+/fv87qygoEB2FnxxGBXsL1811y6CZeoE7jur2dHpdFNTU1NTU+LTACAenj17tnfv3ps3b4p9d0YI0TTVNFY7kJ1CPIn5uBgAxEtJSdmyZUtkZKSKigrZWfBV+yCZlfOR7BTiDBo0AIKUk5OzcePGq1evampqkp0FX7X3nzWkZdF79yA7iDj7yYL9AID2+/z587Jly0JDQ3Fd3EYYNKRmNaRla7o7wW25cQUNGgDBKC4uXrhw4V9//dWjRw+ys+BOdkBvOdN+SNznDpIOfr8ACACDwViwYIG/v7/Yr2BT/yqD18ii0KWhOxMAfsUAdFZ1dfWCBQuOHDliZmZGdhZ81dx7WpeUQqVLkx1EUkCDBqBTampqbGxsduzYMXLkSLKz4Kv2QXJj+jvN9Uvh2JkwMAYNQMexWCw7OzsPD48pU8R/8Ta6gZ7ihOHQnYkEv2sAOojNZi9atGjZsmXTp08nOwu+2EXfEEL0XvrQnQkGv24AOoLD4Tg6Os6ePVvsb49SHXWvOv4h2SkkFAxxAPDLeDyek5PT9OnTnZycyM6Cr6rrtzmlTI1VsDQ8OaBBA/BrMAxbt27dkCFDli9fTnYW3FGVFDSsp8IqSGSBIQ4AfgGGYevXr+/evfvvv/9OdhZ8YWwOQkhpyhjoziSCBg1Ae2EY5u7urq2tvXXrVrKz4AnDmBf/rk16QXYOgP8QR21tbWlpaa9evRBCjY2NZ8+eTU1N1dbWdnZ27tu3L97VARCgjRs36urqbt++newgeMKw8rNhNB0NJYvRZEcB+B9Bv3z50sXFhf/17NmzIyIi+vfvX1dXN3LkyNevX+NdHQBB8fb2lpGREfPujBC7sIRu2F1l3jSygwCEiDxJmJ+fn5ubm5eXR6fTEUJmZmanT58+f/48YQEA6LCLFy9mZ2cHBgaSHQR30vpdpPW7kJ0C/BdxY9AYhhkYGPC7M0Kob9++JSUlhFUHoMOCgoISEhIuXLggxrflxlhNpYfOccqYZAcB/w8RDbqgoODs2bPPnz8vLCzk3+eQwWB4e3uPGDGCgOoAdEZ4ePiNGzeCg4OlpcV2hSBefUPpwbOKk0bRtNTJzgL+H9yHOHr06DFz5syUlJSqqiojI6PCwsJBgwZduHBBRUVl48aNeFcHoDMCAwOvX78eEREhxt0ZIVRz96nKvGmyA+GkvdAhokEfOXKk1UYxn6UExIKvr29qampkZKR4d2eEkMocC7IjgO8j6CRhQkLC7du3v3z5wuFw1NXVzc3NFy5cqKamRkx1AH7VsWPHcnJyAgICqOK7PBCnhFEd+0DdeQHZQcAPEfGPz8HBwdPTU1lZ2dLS0tra2sTEJDEx0djYODMzk4DqAPyqs2fPvn379vTp02Lcndlfisv8gpRmTCQ7CGgL7kfQHz9+fPXqVXp6uoyMTMvtfn5+vr6+MM0OCJvg4OB79+6FhoaKcXdGPB4z6Lr2JmcpdRWyo4C24P5PsKamRkdHp1V3Rgj17du3oqIC7+oA/JLLly9HRkZeuXJFSkqK7Cx4olJ1drhAdxZ+uDfo/v37FxUVeXp6ZmRkVFdX19fXf/369ebNm+vWrZszZw7e1QFov8DAwKioqPDw8ObZ+uKn7tHLhtQsslOA9sK9QdPp9IcPH5aXl1tZWamqqiooKPTt2/fo0aNeXl5LlizBuzoA7XThwoWEhISQkBAx7s7VcYn1L9NhOp0IIWIWh76+/oULFxBCGIZxuVwaDRahBsIlKCjozp07wcHBYvyPs/55GvtrqdYGJ1g+VIQQehrk9evXixcvJrIiAD91+fLlmzdvXrlyRYy7M0JIfoSZxgo76M6ihdAGzWazq6qqiKwIQNtCQ0OjoqLCwsLE9WoUrInNDIhEGEZ2ENARBB0y3L59Oysrq6CgoKCgwNfXFyHUrVs3W1vbNp6SmZn55MmTVhszMjLk5ORwDAokybVr10JCQsT4WkFebX2Zz19KlhPgwFlEEdSgpaSkaDSalJQUhULhf5D86TSm764chsGBABCQiIiIy5cvR0RE/HsOqNhgnLqssmCGbH9DsoOADiKoQVtYWFhYWCQnJ2dkZKxbt649TzE2NjY2Nm61MTs7u7i4GIeAQLIEBQVdv349MjJSjLszQkjbczXZEUCnEDoGTafT1dVhPUNAsosXL8bGxorxsXNj+ru6xy/JTgEEgNAGPWTIkJCQECIrAtDKuXPn+DPqxHXcue5RStXNO3JDBpAdBAgAcQ2ax+PFx8dv2bLl5MmTCKFnz54RVhoAvtOnTyclJYnxjLrG9HcNqVnaW9dQ5eFcujggrkE7Ojru27ePyWTevXsXw7B169Zdu3aNsOoAHDhw4Pnz55cuXRLjdTZkB/bRXL+UQhPbFyhpCGrQWVlZ+fn5T5484Z8hpFAop0+fDg0NJaY6ANu2bWMymQEBAWLZnTFWU/n5cMTjkR0ECBhBDbqpqalbt24tZ87RaDQe/HsC+MMwzNPTk8fjHT58WCzv+sqtqPr2h7/8kAFIjNdHlVQEvaPGxsbp6el//vlndnZ2XV3do0eP1q9fP2vWLGKqA0m2YcMGOTm5gwcPkh0EL+V//a3uNF9uqAnZQYDgEdSg6XR6dHR0SkqKq6vr8+fP161b5+DgsGzZMmKqA4nl4eGhoaHh5eVFdhAcaW9eQe+lT3YKgAvizmX37t37+vXrhJUDYNu2bTQabdeuXWQHwUXNnSdUBTmF0UPIDgJwRMKgVWZmpqurK/F1geRoHnc+cOAA2VlwgGEVQdebPhXJjzAjOwrAF+5H0FlZWXv37m25paKiIiMjo7y83NjYWFyPbgCJmpqaVqxY0a9fv+3bt5OdBRf1z99IqauqzZpEdhCAO9wbtJyc3IsXL/T09FxcXPjXbn38+LG8vNzW1lZLSwvv6kDSNDQ0ODg42NjYiPH9euRHwoGzpMB9iKNnz56ZmZljxow5dOiQrq6ura3t5MmT+V9MmDAB7+pAolRXV1tbWy9ZskQsuzMrr6D08HmyUwBCEXGSUE5Oztvb29HRcc2aNf369bO3tyegKJA05eXl8+fP/89//mNhYUF2FsGre/q65vZjrQ0w8UmyEHeS0MTE5NGjR8OGDXNyciKsKJAQZWVl8+bN++OPP8SyO2McbtPHzzo71kqpKpGdBRCK0CVjKBTK6tWr58+fX15eTmRdIN4KCwsXLlzo4+MzfPhwsrMIGMbmICqFQpNSc7QmOwsgAQnT7DQ1Nfv2hRu/A8F4//79ggULTp8+LX7dmcOo+LbvJLvoG9lBAGnEc9FFICEyMzNXrFhx5coVQ0Nxu6sT610+M/CaxhoHeveuZGcBpIEGDURVSkrKhg0bwsPDu3fvTnYWweMyq3S2raEqKZAdBJAJlr8CIun27dtbtmy5fv26mHVnjMtt+vwVISQ/0gy6M4AGDUTPjRs3jh49GhUVpa2tTXYWQeJW1ZT+eYZdWEJ2ECAsYIgDiJiQkJCwsLAbN27IyYnVXZ3YX0sZJ4PUl9nK9O5BdhYgLKBBA1Hi7+//8OHDyMhIOp1OdhYBoyrJa3uullKBmc7gHzDEAUTG3r1737x5ExISIk7dGeNyq+MeIoSklBShO4NWoEEDEcDlct3c3Fgs1pkzZ8TppoLciqpv+/2p8rJkBwFCCoY4gLBrbGx0dHScOHEi/47DYgPjcMuOXlRfPp/eS6wmogABggYNhFpdXd2CBQucnJzs7OzIziJgFJqU7v6NZKcAQg2GOIDwYjKZs2fPXrdunTh1Z15DI8MviF1SRnYQIALgCBoIqeLiYjs7uwMHDowdO5bsLALDLixhnAlRtZkurQt3qwA/Bw0aCKO8vLwlS5acOnVq8ODBZGcRpPoXb7XWL6Vpa5AdBIgGaNBA6KSlpa1du/by5ctGRkZkZxEMjM3mNbCklBVVbKaRnQWIEhiDBsLl/v37bm5uV69eFZvuzClhfNt3il1QRHYQIHrgCBoIkUuXLoWHh8fExKioqJCdRTAa0rIrI+M11y6W1tMhOwsQPdCggbA4dOhQVlbWzZs3+Xd/Fw80TTXdXW4Uuvi8IkAkaNCAfBiGbdmyhcvlBgQEUCgUsuMIALu4jJXzQXHSSOluumRnASIMxqAByZqampYsWaKhoeHj4yMe3bnu0cvy08EyfXuRHQSIPDiCBmSqrKx0cHBYvHixo6Mj2VkEozE9l/U+X+c/rhQxGqgBZIEGDUhTXFxsb2/v5eU1efJksrMIAMblUaSosgP7yg6EeyIDwYAhDkCON2/e2NjYnDhxQhy6M4ZVxzxg+AWRnQOIG9wbdGFh4Y0bN/hfv3v3bt68eT169Bg+fHhgYCDepYHQunXrlpubW2RkpJmZGdlZOotXV1968ByvkaW1fgnZWYC4wb1B5+XlnTlzBiHE4XCsrKwMDQ3Dw8M9PDz2798fGRmJd3UghMLDw48fPx4bG6unp0d2FgHA2FxVuxmqtpaICp9HgYARNwb9/v17RUXFI0eOIIRGjBghJycXHBxsa2tLWAAgDI4ePfrq1avr16/LyMiQnaVTsCZ2ze1HyrMmS6kqSanCnVAALohr0BoaGjTa/yvHZrMJqw5Ih2GYp6dnU1PTlStXqCJ+sNmUX1j+V4TyzElkBwFijoj/J6mpqQ4ODrt27SouLr59+zZC6Pnz5xs3bpw1axYB1YEwYLFYv/32m4aGhq+vpXiz/AAAGr9JREFUr6h3Z251bWVkvNaGZQqjxGqlPSCEcD+CNjMz++uvvyorK6uqqvT19TU1NRFCnz9/3rx5s5OTE97VgTBgMpkLFy5ctmyZg4MD2Vk6hdfQSJWTlVJW1PZYSXYWIBFwb9Cqqqr/PlJesGAB3nWBkHj37p2Tk9PBgwfHjRtHdpZOqbn3tC7xuc4uN4o0XD0ACELEh83y8vKtW7cOGTJES0tLTU3N0NDQ3t4+KSmJgNKAXElJScuWLbt8+bJId2eMzS49dI5TWq6zez10Z0Ak3P+1cTicCRMmjB071sfHR19fn0ajMZnM5OTkhQsXnj17dvbs2XgHAGS5ePHi33//HRMTo6amRnaWTqFISaktngvrhQLi4d6gs7OzlZSU+FOh+QwMDAYPHqynpxccHAwNWixhGLZz587y8vKoqCjRXTuUW11bGRqtttSGKisD3RmQAvchDllZ2erqai6X22p7ZWWlqM+EBd/V1NS0dOlSRUXFM2fOiG53rnuWWup9VmHcMKos/CsFpMH9CNrIyEhfX3/cuHGLFi3q3r07jUarrKxMSUkJCgqKiorCuzogWEVFBX91ut9++43sLB2HsdnsL8W6u90oMnSyswCJhnuDplAoMTExYWFht27dunr1KpvNVlNTGzx4cEpKSq9esGCuWMnLy1u6dOkff/wxceJEsrN0UENqluyA3hS6tKrdDLKzAEDIlYQ0Gs3R0dHR0bGhoaG0tNTAwICAooBgT5488fDwuHTpUu/evcnO0hFcZlX5X3/TdDRkB/UjOwsA/0XoNV1v3rxZvXo1kRUBMcLDw728vKKjo0W0O2OsJsapyyrWU9SXzKNIifaFjkCcwKRO0CkYhu3bty8vLy8mJkYUz/ryauupivIUGbrOf9aRnQWA1ghq0CdOnLh//35FRUVOTo61tTVCyMTEZP/+/W085eHDh/Hx8a02Pn78WENDA8eg4FewWKzVq1f37Nnz0qVLInc7QYzLrY661/A2V2f7Wrj8BAgngv5dzp8/f/LkyW/fvvX39+f3ZQUFhbafYmxsrKio2Grj58+fWSwWXinBrygrK3NwcHB2dhbFFTZ4dfWl3mcVxgzV3bUOidqfFiA5CGrQenp6enp6tbW1ioqKJiYm7XmKlpaWlpZWq406OjrFxcU4BAS/Jjs729nZ2cfHZ+TIkWRn6QiqvJz21jVUBTmygwDQFkLPh2hqaoruBCzQ7Pbt26tWrQoNDRW57lz35NW3fScRQohCge4MhB+hQ29GRkZbt24lsiIQOB8fn0ePHsXGxiorK5Od5Rdwq2sZp67Qu+lqb1lFdhYA2ou4I+jS0lJPT8/hw4evWbMGIXT48GEOh0NYddB5jY2NTk5ODAbj6tWrotWdEUIUmpT6Uhu136zh4kAgQghq0Gw2e+rUqRQKZfny5SUlJRiGpaWlHTt2jJjqoPO+fPliZWU1Y8aMP//8U4RuiVL/KqP8bChCiCovJ91Vm+w4APwagv6nvXnzpmfPnt7e3vxRSwqFsnPnTlgSWlQkJiba29sfP37czs6O7CztxWVWlh4+35iWreZoTXYWADqIoDFoZWXlioqKlls+f/4s6ssESwh/f/+4uLjY2FjRer94TWzVBTPoPfTIDgJAxxHUoPv06SMjIzNt2rSBAwcWFBTs27fv7NmzoaGhxFQHHdPQ0LB27VotLa2bN29KSUmRHadd6p685pSUqcyfLq3beo4mACKHuMHEmJiYmTNn5ufn6+vrMxiM2NhYkb4NktgrKCiYPn36rFmzDh8+LBLdmf2l+Nu+k02fCpVmTiQ7CwCCQdw0Ozqd7u7u7u7uTlhF0GG3bt3au3fv2bNn23lVkTDg1TdorFpI09EkOwgAAkPEEXR+fr67u/vy5ctv377dvPHt27fLli0joDr4JTwez8vL66+//oqPjxf+7oyx2VXXb9c9eYUQkunbC7ozEDO4N2gWizVp0qSmpqa+fftu2rRpx44d/O319fX5+fl4Vwe/hMlkzp07V0lJKTw8XPhnOte/eFuy+zhVWVFh9BCyswCAC9wbdFZWlq6u7unTpz09PVNSUl6/fr1v3z68i4IOePny5cyZMz08PDZt2iQSS9NRZKR1drkpWYyG1Y6AuMJ9DFpBQaGqqgrDMAqFIisre/XqVQsLC2Vl5REjRuBdGrTfyZMno6Ojr1271qVLF7KztIVd9K0yLEbVfqZ0N1050/5kxwEAX7gfQffu3VtXV3fKlCnfvn1DCMnLy8fHx1+/ft3NzQ3v0qA9qqqq7Ozsvn37FhcXJ9TdmccrPxtaceWGygIr6W66ZKcBgAhE3DQ2Li7u/Pnz0tLS/C2qqqr3798PCAgoKSnBuzpo24sXL9zd3ffs2TNt2jSys/wMhaI0fTxceAIkChHT7OTk5NavX99yC5VKdXZ2JqA0+BEMw44fP3779u3r16/r6grpASnGaqqOT2pIzdT1Wo8oFOjOQNKIzKo3QIAYDMb8+fOrqqpiYmKEtjs3ffxSsueElLKCzi43OA0IJBPcik3iJCYmbtu27dChQ8J5JSfG5XErqmiaatIGerr7fod7bANJBg1agnA4HC8vr+zs7JiYGGG89y6PV/voZc2tJKXp4xUnDIfWDAD8H5AUHz9+nDZtWrdu3a5evSqM3Rmhqht3ueUVOrvcFCcMJzsLAEIBjqAlQlBQ0IULF86ePdu/v3DNHca4vLonr2SMukt31VGxEfqZJAAQCxq0mCsvL1+7dm2PHj3u3LkjIyNDdpwWMKz2fnLNvafywwfRNEzJTgOAMIIGLc5iY2P379/v7e09YcIEsrO0hnF5CCHd3W5wk0AAfgQatHiqqanZvHkzl8u9deuW8Cx7xKtrqLmV1JRfqLXJmUKTUrQYRXYiAIQanCQUQ/fv3582bdrMmTMvXLggPN25PuVtqfcZmraG1kZYZhaAdoEjaLFSW1u7ZcuW2tpa4ZlI1/T5K0KI3r2r3JAB8uYD4ZITANoPjqDFx+3bt6dNmzZ9+vSgoCBh6M6N6bmlB85UXbtNoUsjhChSUtCdAfglcAQtDphMpoeHB4/HE6p7bzcVFKmvsKNpqZMdBABRBUfQIi8iImLmzJn29vYBAQHkdmduRVVlWOy3/af43yrPmgzdGYDOgCNoEZafn79x40ZDQ8O7d+8qKCiQG6bhdWZ1/EOlaeNU7WeQmwQAsQENWiSx2ewjR47cuXPHx8fHzMyMrBgYq6n28UualobcoL5yQwbIDRlAVhIAxBIMcYieBw8eTJw4UU1N7e7duyR2Z2bgtZJ9J7EmtkxvA7IyACDe4AhalHz9+tXDw4NOp1+7dk1HR4f4ABibzXr3SXZAb4SQ4uSR6k42xGcAQHJAgxYNbDb7xIkTN2/e9Pb2Hj16NAkBSspq4h6yPnxWHGfOb9D07l2JjwGARIEhDhEQHR09ceJEOTm5Bw8eENydeXX1GKsJIcRlVsqPHtzlj9+VLMcTGQAASQZH0EItKytry5YtvXv3jomJIXQKHYY1pGXXJiZzq+s0VthJ6+nIGvcmrjoAACEEDVpolZaW7t69++vXr4cPHyZyEWesiU2hS3Ora1nvP6kunC3dRYuw0gCAVqBBC526ujpfX99bt27t2rVrypQpxBTllJbXPXpZn5qpMNJMedZkKRUlVTuYzgwAyaBBC5GmpqazZ8+GhISsXbs2MTGRSsX9DAGvroGqIIcQqktOk9bvojvHgiIN/yQAEBZEnCQsLy/funXrkCFDtLS01NTUDA0N7e3tk5KSCCgtKjgcTkBAwIQJEygUysOHD5csWYJrd+ZW11bHPfy214/hH4x4PISQyhwL+eGDoDsDIFRw/w/J4XAmTJgwduxYHx8ffX19Go3GZDKTk5MXLlx49uzZ2bNn4x1AyHG53NDQUH9/f2tr63v37snLy+NXi1NaTlWQpyrIsb8UUxXltTxWUuVk8SsHAOgk3Bt0dna2kpLSmTNnmrcYGBgMHjxYT08vODhYkhs0h8MJCQk5c+bMrFmzbt26paSkhFMhXn1DdfT9xox3UuoqaovmUBXk+BOZAQBCDvcGLSsrW11dzeVypaSkWm6vrKwUrnuYEqixsfHSpUuBgYHW1tY4tWasid2Y8Y4iTZMd2BdhSNbYSMVmOoxgACBacP8fa2RkpK+vP27cuEWLFnXv3p1Go1VWVqakpAQFBUVFReFdXdiUl5efPn06Li5u0aJF+A1olB27yK2skR3YR3HsMIQQVUFOduD/tXfvUVGV/R7An81wk4sMCBgC5oCZtaZQQ24BYUmW2KpF9NI6i1cLyKWRWFkmWSdvtfQVUnExb5q4FEpZp4OJMS0KRKO4SFcuwoRxQi4CAwhxm2FmmH3+2Kc5hAMiweyHzffz18yPYe/fw+h3bfY8PM+903EiAJhW0x7QDMPk5uZmZWV99dVX2dnZWq3W0dFx+fLl33//vZeX13SfnR6//vprampqTU3N5s2bk5KSRv0+8Xfo1UPqq9fUv9QSQpziniOEOL/yT8bCYqqODwB8McXvvObm5jExMTExMSY4F22Gh4flcvmxY8fs7Oy2bNkSHBw8JYdldcOa6y1WXp6EYfryiohebxvmb+XlyX0V6QwgDKYI6K6uroMHD3799ddNTU06nc7JycnX1zchISE0VMirOrS0tJw8eVIul69Zs+b48ePu7u5TcljVzzW9X15mNVqrJRIriQdhGIdnwqfkyABAG0yzm2JDQ0O5ubkZGRl6vT42NjYpKcncfPI/ZFajVV+9plbUa+ob5236D3NnR0uJp8vrsZgeBzAbYJrd1NDr9cXFxWfOnKmoqHjqqafS0tI8PDwmdyBNc9vQtQbr+7wtFszXNN4Yqm+c8+BSceQaxsqSECIST9dsPACgDabZ/S16vb6kpCQ7O7usrCwoKCguLs7X1/fODsGy2htKszlWIiextrWj699nLDzvsrpnkcjBnhBitfhuq8XYrwRglsI0u8kYHBwsKCiQy+WVlZWBgYHPPfdcSkrKBP84W69SE73ezNZGPzCoTD5BhlmLBa52q4NETmILN5e79myd7uYBYKbANLuJYlm2uro6Pz//4sWLarV69erVL7/8so+Pz/jfpR9QsRqNyNGBHR7uSD6h7x9krK3sHwuyCVhmZmtz139uIQxjmv4BYMYx6TQ7lUqlVCrvvnvG/M6u1WorKiqKi4u//fbb9vb2+++/Pzw8PDMz08nJ6dYX6/sGtMouQoiV90JCiPJfx/W9A2b2NjaBK+xCVzIikcvrsaMnwCGdAWBsJv3b34qKil27duXl5ZnypHdkaGiourr6p59++vnnn2traxmGefDBB4OCgo4ePerm5vb/L6tv1Da3Dd/sMbOZY78mhBDSceQ0q9GYu84zLHPhun3jqINjejIA3JHZuzhDR0dHfX19Y2NjS0tLy/XGpuvXWzqUNjY2YUvuX+YpCQl8dME/NswN8yeE3Dz535p//1cbq7f0Xuj0wrOEEM3/NDFmZpaLPCw8/y+1XbZu4HMwACBEJgro1NTUwsLC7u5uhULxzDPPEEKkUum+ffvG+ZYLFy588skno4oVFRWLFi2a4Ek/3/i66GYvIaSb0cuZfkLIU6ydx7CZalh3QzeUN0e7ePHiNWoLqZZY2rrargt0i/sHIaT/Upl+UG1mN8d8vjN3HMd/Pj3q4tc+/OEJ9gAAMGkMy7ImOE1LS0t3d3dlZaVMJuPmRNva2kokknG+RavV9vf3jyqeO3duYGAgMTFxIicd6O4ZGhwk3L2FPxdyMzc3n76FPQFgtomPj09KSvL29p6Og5voCtrd3d3d3b2/v9/Ozk4qlU7kWywsLG7dx9re3n5oaGiCJ7V1FNs6iu+sUQAAaphiyysDZ2fnsLAwU54RAGDmMmlAL168eMeOHaY8IwDAzGW6gFYqlW+99Zafn9+mTZsIIQcPHtTpdCY7OwDAjGOigNZqteHh4QzDxMbGtrW1sSz7yy+/HDp0yDRnBwCYiUwU0BUVFRKJZP/+/QEBAYQQhmHeeeedoqIi05wdAGAmMlFAz507t7u7e2SlsbHx1kkaAABgYKJpdkuWLLGysnr88ccfeOCB69ev792799ixY2fPnjXN2QEAZiLTfUiYm5sbERHx+++/e3p6dnZ2yuXykJAQk50dAGDGMd1aHJaWllu3bt26FesdAwBMiCmuoLu6unbs2LFixQoXFxdHR0dvb+/o6Gh8QggAML4Ztmmsg4PDBx988Pnnn0/kxeXl5X9nw1ZqqVQqa2trRnBrSWs0GjMzM+G9ZcPDwzqdTgAbvN1KpVLNmTOH7y6mnkaj4eabTURTU9M0/hDYaVZZWRkQEHBrPScnJzo6elpPHRYWNq3H58vzzz/f2trKdxdTLyUlJScnh+8upl5RUdG7777LdxdTT6VSPfHEE3x3MS3oiY5pv8Vh2DR2VF0Ym8YCAEwfbBoLAEApbBoLAEApk24aa4JzAQAIhkmXGwUAgIkTckALb8IWx8zMzMxMgG+cSCQSiUR8dzH1hPp+MQwjyPeL0BQdJtqTkBd9fX2C3H5QqONSqVQWFhb0/N+YKnq9XqVS2dra8t3I1BPqP0V6xiXkgAYAmNEE+JsXAIAwIKABACiFgAYAoBQCGgCAUghoAABKIaABACiFgAYAoJRo165dfPcw9bRa7fnz5/Py8hiG8fDw4LudSVKr1UeOHBGLxS4uLobiN998c+7cOaVSec899xj+Ps1okVo1NTVnzpypqqqSSCSGlc4VCsXZs2cVCoVEIrG2th6nSK329vbMzMyysjKxWOzs7MwVOzs7s7KySkpKnJ2dDdvYGy1Srrq6OiMjIygoiHs608fFsuzu3bsv/6mtrU0qlZIxooPHPKH9P/PkREZGpqen9/X1xcTEnD59mu92JqOuri4kJGT//v01NTWGYkpKyiuvvNLf33/48OH4+PhxitSSy+VhYWHt7e0lJSVSqbSzs5MQUlpaumrVqra2tkuXLgUGBqrV6rGK1Kqrq/Px8amtrW1sbAwMDPzuu+8IId3d3b6+vuXl5U1NTUFBQVevXh2rSLnh4eG4uLjk5GTuqQDG9ccffxw4cMD6T5aWllzdaHTwmSc8bxgwDX744QeJRKLT6ViWvXLlyqJFi/juaDL27dtXVlb22GOPffbZZ1xFq9U6OTnV19ezLKtSqebNm9fQ0GC0yGfftxMdHZ2Zmck9XrVqVUZGBsuy69atO3nyJFd88sknT506NVaRWgcOHHjvvfe4x2+//XZ8fDzLssnJyevXrze84IUXXhirSLlDhw6tX79+/vz53FMBjKuhocHDw2NU0Wh08JsnAryCLi0tfeSRR7hlXFauXKlUKtva2vhu6o7t3LnT399/ZEWhUMydO5dbRNva2trPz6+0tNRokZ+OJyYrK8uw8KxGo+FWqCgtLX300Ue5YlhYGDcEo0Vqbd++3XC3cGBgQCwWE0GMixDS3Nz80UcfjbwXKoBx9fT0ODg4FBUVpaWlFRcXc0Wj0cFvnggwoJVKpeEOIMMwLi4uSqWS35amxMhxEUJcXV2VSqXRIh/d3bHc3NyOjo6IiAi9Xt/V1WUYBTcEo0X+mp2ojz/+ODY2VqFQvPnmm+Svb5lhCEaLNNuyZcv7778/cvEgAYyrp6dHoVDIZLLm5ubo6Og9e/aQMaKD3zwR2spht2JZVngbYJMxxjVTBpuTk7Nt27Yvv/zSyspq1H6V3BDYv67hNVPGRf7chLO+vt7V1XVkfYa+XxcuXNBoNM8++yz3acGtZui4/P39GxsbFyxYQAjZsGGDj4/P9u3bR72GhqEJ8Ap6/vz5ra2t3GOdTqdUKt3c3PhtaUqMHBch5MaNG25ubkaLfHR3Bz799NOdO3cWFhYuWbKEECISiZydnQ2j4IZgtMhbxxP20ksvyWSyxMTE1157jfz1LTMMwWiRWq+++qq3t3dycrJMJhscHExOTlapVAIYl7W1NZfOhJClS5eKRKLW1laj0cFvnggwoIODgy9evKjVagkhBQUFEolk5E2AmWvp0qVDQ0PV1dWEkJ6entLS0ocffthoke9Ox1NeXr5nz57CwsKFCxcaisHBwXl5edzj3Nzc0NDQsYrUiouLO3r0KPfY0tKS++c3cghffPHFreMyFKmVmJg48p3iCGBccrl827Zt3OOrV69y8+eMRge/eSLM9aAjIyN7e3uDg4NPnDhx+PDhqKgovju6Y+np6R0dHenp6f7+/lKp9Omnn77vvvuOHDmSlpYWExMjl8v9/f1TU1MJIUaL1AoLCxOLxQEBAdzThx56KDw8vLy8fO3atZs2baqrq/vtt9/Ky8vNzc2NFvltfhyXLl2Kiop68cUXbW1tjx8/vnv37o0bN/b29vr4+KxevdrBweH06dNXrlzx8vIyWuS7/dvr7OyUSqXc52MCGFd7e/uKFSvCw8O9vLxOnTqVkJDA5bXR6OAxT4QZ0NzE8qamptDQUF9fX77bmQyZTDbys4ioqChuIv3ly5d//PHHe++9NyIiwnAvzGiRTh9++GFvb6/hqZ+f39q1awkhtbW1+fn5YrE4MjLSzs6O+6rRIrWuXbuWn5+vVqtDQkJWrlzJFTs7O8+fP6/RaNatW2e4FDVapNzg4KBMJnvjjTe4pwIY182bN7Ozs/v6+gIDAwMDA7mi0ejgMU+EGdAAAAIgwHvQAADCgIAGAKAUAhoAgFIIaAAASiGgAQAohYAGAKAUAhoAgFIIaAAASiGgAQAohYAGAKAUAhoAgFIIaAAASiGgAQAohYAGAKAUAhoAgFIIaAAASiGgAQAohYAGAKAUAhoAgFIIaAAASiGgYTZqbm7esGFDenr65s2b+e4FYEwIaJiNqqqqCgoK1Gr13r17+e4FYEzmfDcAwIPq6mqpVJqQkMB3IwDjwRU0zEZVVVURERF8dwFwGwhomI2qqqqWLVvGdxcAt8GwLMt3DwAmpdPp7O3tW1tbxWIx370AjAdX0DDr1NXVubi4IJ2BfriChlmnu7u7oaFh+fLlfDcCcBsIaAAASuEWBwAApRDQAACUQkADAFAKAQ0AQCkENAAApRDQAACUQkADAFAKAQ0AQCkENAAApRDQAACUQkADAFAKAQ0AQCkENAAApRDQAACUQkADAFAKAQ0AQCkENAAApf4XnlRFI4kLC14AAAAASUVORK5CYII=", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "%%R\n", "library(spatstat.geom)\n", "library(spatstat.explore)\n", "\n", "# convex hull around centroids\n", "cvxhull <- convexhull.xy(cbind(df$centroid.1, y=df$centroid.0))\n", "\n", "# subset to B cells\n", "df_subset <- df[df[[\"labels\"]] == \"B cell\", ]\n", "# point pattern of B cell centroids inside hull\n", "P <- ppp(df_subset$centroid.1, df_subset$centroid.0, poly = cvxhull$bdry[[1]])\n", "\n", "# Ripley's K only\n", "K <- Kest(P)\n", "\n", "# plotting the result\n", "plot(K, main = \"Ripley's K function for B cells\")" ] }, { "cell_type": "code", "execution_count": 8, "id": "d63134d8-cb51-426b-b9f4-5cfc8a8fdb1e", "metadata": { "tags": [] }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAeAAAAHgCAIAAADytinCAAAgAElEQVR4nOydd1wTSRvHfwEs2EURAXsvd3r2AgoIdrFg72fXs569nOXU13beWVDPfmfvBTsKFkRRwd4rFhAUpHdCnveP5BKy2VQSkuB8P/NHdnbmmWc3u08mM888IyAiMBgMBsP0sDC2AgwGg8HghxloBoPBMFGYgWYwGAwThRloBoPBMFGYgWYwGAwThRloBoPBMFGYgWYwGAwThRloBoPBMFGYgWYwGAwThRloBoPBMFGYgWYwGAwThRloBoPBMFGYgWYwGAwThRloBoPBMFGYgWYwGAwThRloBoPBMFGYgWYwGAwThRloBoPBMFGYgWYwGAwThRloBoPBMFGYgWYwGAwThRloBoPBMFGYgWYAwKJFixYvXqz42QRRpl5kZOSiRYu2bt2aC22pPmVe6HYhZvTAmDUCIjK2DgyNEAqFS5culR5aWVmVKVOmZcuWP/zwQ86FCwQCS0tLoVDI+WwgwsLCtm/fPn369CJFimhbV5l6Dx48aNCgQaNGjUJCQvSkplxbHJ1z4S7lDrpdSC4/MN8vxDATUlNTeb/ByZMn51w4AEtLS8XPBmLVqlUAIiIidKibmZkpFAoV8+/fvw+gUaNGOdaOvy2Ozrlwl3IH3S4klx+Y7xar3PkZYOiR9+/fFyhQQCgUXrt2bdCgQevWrZs/f36pUqU4xV6/fn3hwoXMzMxGjRq5uLhI81++fHn9+vWYmJiWLVs6Oztr1bTmMsX9/VKlSo0bN+748eMfP350cnJq0aIFgE2bNu3YsQPA6tWrO3To4OrqKi45YMCA3bt3t23bVvyf4PPnz2fOnImOjnZ0dPT09LSxsRG3tXTpUgsLiwULFogPz549++jRo9q1a1esWJGj7fXr1+/du5eVlcXRFgARLV26tHjx4pMmTQLg5+cXGBhYvXr1gQMHAjh27Njjx4/Hjx+/ceNGcVscnT08PAAIBAKRSOTj4/Pu3buWLVuKr07zm8Z7gSrum7e397dv30aNGuXo6CiuvnXrVhsbG/ElKH4FZ86cCQkJcXFxcXNzA3Dx4sWbN282a9asY8eOHA15LyQhIeGvv/4qUaLElClTAERGRm7evNnBwWH06NEaPSsMvWDsXwiGpkh70KmpqeIcoVBYqFAhAOHh4ZzCu3btsrS0FAgE4gL9+/cXiURE5O3tbWFhYWtrW7lyZQAzZ84Ul4cGHSKtZIpEIgD29vZeXl4ODg4CgUAgEBw4cICI2rVrZ2VlBaBcuXIrVqzIysoC4ODgILYj27ZtI6JTp04VL14cgLitEiVK3LhxQ1G9uXPnArCysrKxsREbTWkPul+/fgBKly5dunRpAIMGDeJcTsOGDa2srFJSUoioQ4cOABwdHcWnfvrpp0KFCmVkZEjb4ugsVqNw4cLjxo0TfykCgWD//v2a3zRlF6jivokt47p168SS165dC2D06NHKvoJ3794VLVq0TJkysbGxUVFRNjY2xYsX//DhA0dDZRfy6dMnABUrVhQX4/xB0eSBYeQcZqDNBqmBnjdv3sKFC+fNmye2aFOmTOGUjI2NLVmyZMGCBZ89e5aeni7uEPn4+ISHh+fLl69cuXJJSUkikcjT09PKyurjx4+kwfumm0wAS5cuJaJNmzYBcHZ2FkurWrUq5IcLLCwsxo4dGxcXl5qaGh8fX7p0aUtLy4CAACLatm0bgBo1anDUi4yMzJcvX4ECBV6+fJmVldWrVy+pBfn48SOAtm3biqvMmDGjZ8+e0dHR2a/o119/BXDjxg2hUFi0aNHWrVsDePfuXUpKipWVlYeHB+dWKOpsaWk5bNiwz58/T5s2DYCTk5OGN03tBfLeN39//+wX1aZNGwBXr15V8RWIJY8ZM2bIkCEAdu/erfhcKbsQZqBNAWagzQbeMehatWpt375d3CmTcu7cOQDu7u7iw5iYmNevX3/79m3fvn0AqlWrNmvWrFmzZrm7uwPYuXMnafC+6SYTQExMDBGFhYWJu5/i6orGDkBYWJj48MyZMwBat24tPhSJRCVKlJCWl6p36tQpAG5ubuJiV69elVqQhISEfPnyWVtbT5w48ciRI1FRUYr38+TJkwDWrl0bHBwM4Ny5c5aWlrt27QoMDJTaR9UGGv/9d3n37l32q1N709ReIO99EwqFdnZ2+fPnT0xMjI2NtbKyKleunEgkUvEVEFGXLl0EAgEALy8vxZug4kKYgTYFmJud+REWFhYVFfX169fg4GAbG5uRI0d6e3tnLyB+taSj0iVLlqxWrZqNjU18fDyA5OTkBw8ePHjwwMrKqn379uK/2GrRTaalpWXJkiUBFC5cGEBmZqYy+RYWFg4ODuLP4eHhAOzs7MSHAoHA1tYWwOfPn7NXiY6OBiAdm5Z+AFC0aNGDBw+WKVPG29u7d+/e9vb2kyZNInmHpVatWgkEguDg4GvXrhUsWNDd3b1+/frXr1+/ffs2AFdXV7X3xNLSUqyz+BoVr07ZTVN7gbz3zdLSslevXhkZGX5+fufOnRMKhf369RMIBKq/grFjx4ovXMXYsdoLYRgLNklofpQqVapgwYIAbG1thw8ffvPmTV9fX/FMkRjxmx8VFSU+/PTp08uXLytWrFihQgUA9evXP3/+vLaNGkJmdsSDreLP5cuXBxARESE+FIlEX758ASBuS4rYIktVEls9KV5eXl5eXs+ePbt27dpff/3l7e3t6enZtm3b7NV//PHHO3fuJCQkNG/ePH/+/M7Ozr6+vomJiYUKFWratGlOLkeMspum4QUq0rdv340bN549ezYhIQHAgAEDpLV4v4K0tLRp06YVLVo0KytrypQp9+/fFz85miAec09LSxMfRkZGaliRoU+M3YVnaIp0iOP9+/cRERERERH37t1zcnLCf70kKVFRUUWKFMmfP//Tp08zMjI6deoE4ODBg+JBW2tr61evXonf2DZt2jx9+pQ0+MeaQ5mxsbEA7OzsxIc1a9YEEBwczNtifHy8ra2tpaXl7du3iWjLli3INsIrLRweHm5paZkvX75Hjx5JVRL/Bw8MDHR3d//777/FVcRziUePHuVc1MSJEwUCQdGiRRcuXEhEhw8fBlC6dGnxADRHMRU6c65O7U3T8AIVJYtEIkdHR3t7+2LFitWqVUucqeIrEI+zr127dvny5QCmTp1KCihrLjMzs0CBAgBCQkKysrK6du0KNsSR6zADbTYo84OuX78+Z/qLiHbs2JE/f34LC4uiRYsC6N27t9TjwsrKytLSUuxCMGjQIHG+Ju9bTmRyDE3//v0BFChQYMyYMbwtnjp1qlixYgKBQCyzSpUqT548UVRP7AFmYWFRuHDhPn36AGjQoAERxcfH169fH0D58uXFHcymTZsmJydzrujo0aPie+jv709E0i6teACa05YKnZUZaBU3TcMLVJQsvmQAixcvlmbyfgUBAQEWFhYNGjQQCoUZGRl169a1sLC4fv06R0MVzU2ePFl8yWXKlPnll18ANGzYULEWM9CGgw1xmA1WVlYLFy6UHorf7Tp16nh4eFhYcOcShg8f7uzsfP78+aysrIYNG0pHVCdMmODh4XHt2rWUlJRGjRqJXRcALFy4UCok+2d9ySxYsODChQul6wY3b97s5OSUnJwsdkVQbNHT0/PZs2enT5+OiYmpUKFCjx49xKOxnMJr1qxxcnJ6/fr1Tz/91KpVq9q1a5cpUwZAsWLFbt++7evr+/LlS0tLy9q1a7dv317xotzc3MS3VOxfUbZs2VWrViUnJ4ttPactFTpzrk6Tm6bhBSpKHjt2rNgK//zzz9JM3q8gNDR0/vz5PXv2tLS0tLS03LNnj9jTmeP8rqK5NWvWuLq6vnz5smHDhq1bt7a1tZWOm2vywDByDlvqzWAwGCYK+91jMBgME4UZaAaDwTBRmIFmMBgME4UZaAaDwTBRmIFmMBgME4UZaAaDwTBRmIFmMBgME4UZaAaDwTBRmIFmMBgME4UZaAaDwTBRmIFmMBgME4UZaAaDwTBRmIFmMBgME4UZaAaDwTBRmIFmMBgME4UZaAaDwTBRmIFmMBgME4UZaAaDwTBRmIFmMBgME4UZaAaDwTBRmIFmMBgME4UZaAaDwTBRrIytgHZER0dfuXLF2FowGAyGBAsLi65du+bLl88Qws3MQF++fNnHx8fFxcXYijAYDAYA7N69+6effqpataohhJuZgQbg5OQ0evRoY2vBYDAYAHDnzh3DCWdj0AwGg2GiMAPNYDAYJgoz0AwGg2GiMAPNYDAYJgoz0AwGg2GiMAPNYDAYJgoz0AwGg2GiMAPNYMiIiEB8vLGVYDD+w/wWqjAYqsnIAACRCBs34sYN2NlhwgTUrSs7a2EBS0vs2oUjRyAQoFcvDBmCoCDMnImbNwGgb19s346CBfHvv7h5E3Z2GDMGlSrJtXLpEtauRXIyataEhwcePcLz57CyQrduaN0aDx7A3h41a6Jw4Vy9dkYeQ0BExtZBCw4fPhwdHf3LL78YWxGGccjKgqWl0rNRUZg4EYcOAYC9PSIiZKfu3UPZsvjlF5w8CQDFi8v1lKtXx+vXcqIaNECVKjh2TJbz/DlKl8a6dXj5EoUL499/NVK4WTPUro2YGFSsiClTkJ6O+Hj8+CMz3HmHkSNHzpkzhy31Zny/pKdj+nRs2AAAnTujdm0IhXBzQ9eukgIREZg8GUeOSA7L4KttRGQDhNnhSyGkFEHSoYaoUTaheWRWK2QWQRLiUQwJlsjKj4zCSMZrFEe8BUQFkJ4FSyGscB8Z9/OPhcSOxqFEQgdBRDKqR1uXR0EAzWARj+IAMpEvCUUAxKJkKqw/oXwE7D+hfAoKAbh9G7dvS7Ty9pZd0YULaN8ekZE4fhzJyejYET/8YPDbyDA7mIFmmAG//SaxzgDOnsXZsyiJ2EtrPx+y/Vy7REThuPDCCRH90sOnILIcwsoiMj8yeKREIhXWaShIEMShBCB3GI/iKSiUjgIALCAqDkkHuwiS8iGzJGILhAlLZyVWBACJcQdgjdSCSOPV+RtKvUelD6goTu9QJRSVQ1E5GYUBdOiAGTPwxx+SwjNnYts2jByptzvGyBswA80wA57cTvbE5fbwrY+H9ohwwGdrpAJAFBAFALEo+RkOn+FwFa7hcIyAfTgcI1E2DOUSUVRcIKdKZCk9Y4msYkgAYIsoB3wuj0+OCK+AjxXxoRZedMCFQkiRFo6CrdhSv/+j0hhUDkXll6j5ARVHjcLQoTBM0EqGucIMNMNUIcKjR/D1jTvk63MvMD8yklE4GE2C0CISZaVWOAL2n+GQCmsjapoFS/EPQCxKvkINxQK2iKqE95XwvjJCKyO0Et7/hAfdcbIA0sUFImAfhBZx81vaejaPr9bo1oOCIhFSU5GZidatYW+fq5fDMB2YgWaYGNHR8PODry9d8BVERhAEH1DPF1N80T4QzhnIb2z9dCEKtlGwDUaT7JkCkD0iKiO0Hh61QFBz3LJdeRwrYY38xdHwFpoHocVNtAxDuePH0aOHsXRnGBNmoBkmQFZWys0H0Qf9St33Kxx8FUJhVolS1yzbHILHeXT8hPLG1s8gEATiYZkbcPob45o3x+Sf43eMDXZGYCPc/Rn/TsFaABGwv+vVSLTM2aKV07NCjZeuLhgZicqVMX++xPPv4UO8eIG6ddk0Yx6EGWiGwcnIwJo1uHAB6ekQiWBtjapVMXcuqhT+goCAb/+etvY/Uyg91hGWD/DTDetpp4UeV+Nchd/Zw3nrFm7dKg54+MEDgCWyauGFE26I7bVg7lmAasBqGurfgNPdK43cdrYOia40Ywb++UcioXt3DB2KRo1QvjyEQggEqlwSGWbB9/UOMIzCjBlYv17yuSDSnBFY/apf7A4/CO6BSAi7s/A4gy6n4RmLkuLJP1OmTx8cPqwfUWXLonlziWs2hyxYPkXdp6i7FaMB2OFLU9xphLtOuDEK2yZhPYDYcvZeaY3KwPkGnILR5OTJAmJRTZogOBgABg3C+vUomeP5UYaxYAaaYVhEIqxfD0eE98CJzjjrgmvWSE1DwQC0vtR+9a8X2j9FXfVSTAl9WWcAkZH81lmRL7A7Dc/T8ASQD5kNcL85brVIC2qJm11wBkAqrEPQOAgtgtAiKLgFYAdg714IBNi9W28KM3IZZqAZhuT9+6yDx27iWHPcEoBeoNYWjPFF+2twSYV142g8NbaC5kgm8t1B0ztouh6TADjgcwsEtcTN5rg1GetmYhWAd6hyGW0Oo8+BPW5r1liVKmVspRk6kXsGOiEh4dOnT0Kh0MbGpnz5vDntwxATEfD69Ypj1R4ec/gckg+wLdpgfuKSY+j5ArWyFwsJMZaCeYrPcDiGnsfQE0ABpDfEvea41RI3++DwSGyPgu3R0l6fnfv8etKlRCk2Jm1m5IaBvnXr1pQpU+7du2dnZ2dlZRUTE2NtbT1hwoS5c+daWLBwenmId+9w+nTSP0fsH96wB56hzjYsrDi7f5NBNa+OwYsbxlZPCWPHAsDmzcbWQx+ko4B4lGMNfi2A9Ha42BtH+uNAscAtSY6l0KcTevdGx46wYn+dzQQyMElJSXZ2dgcOHEhPT5dmPnv2zMnJac2aNdpKO3To0MaNG/WqICPHPHlCCxdSnToEkIXFU+tGi7CwGl4DJE4pKZSRQSEh5O9P0kwTSdWrU0wMXbtmfE2kydWVHj+m1at1l9Cjh9xhQaR64tRuDKaiRQmg0qVp9Gi6fp1EImM/OnmBESNGvHnzxkDCDd6BffHiRZ06dfr165c/v2yJQe3atRcvXnz16lVDt87QCydOYNIkLFiA9+8lOaGhOL3i6cv+i6hmLfzwA5YsQcmSor/WDnL5VDc1ZBEWvUE1afV373D+PP74A3PmGEV9Vbx+jf79IRQaW49sXL2KsDA8eqRRYVdXNG4sl9OzJ44fR3S0LCcNBU/Dc6frbnz5glOn0LEj9u1Dq1aoUAGTJyMwEGYV0vL7wkCGX0pERISDg0NkZCQnf968eRMnTtRWGutB5zIZGTRihFx3rC6erCi48BWqEyCE5cOiTrGL1oo+R6xYobRDt2GD8buleTXt2kVfv8q6zN27k/RV8/KSKzlnTrbvNSWFTp2iwYOpUCECqHx5mjSJrl/PEorCw0koNMajZrYYtAdt8KGosmXLjh07tlatWu7u7hUqVLCysoqLiwsODk5PT/f19TV06wzdCAvDrl04exZBQZIcZwT2xSEvHHfA5/S0ApfQdhnm+qBbbGLJQW/Q6jRmz+YX9ccf+vRLY3CwsICtrSRmKRGKFJGd2roVJUtixw4AmDsXixZlq2ZtDU9PeHrC2xs+Pjh8GJs3Y/36UFQ9jD6H0HfMpvrjxuXulTD4yKWA/R8+fPDz8wsLC8vMzCxZsmSDBg1cXFwstV/nxAL2G5rUVJw5gz59JIeFkDIIe8djYz08SoX1eXQ8hp5n0CUBxaRVXF1hbY3z5/kFZmayCG2q+PFHlCyJb9/w9CkA1K0r+aAhjx/rZ4X3k+uxf7U+2ReH3OFvBeFL1HzfZUKhyaOc2hRgE/mqyQsB+ytWrNi7d2/mZmfinD+PTp0kn6vi7Tj8PRw7SyL2PhqMwI5D6JsMno1AChVSNYablAQbG8TE8J+tWxdFiuDlS8TF5Vx9s6F8eXz6BBcXTJiAXr0kmTEx+PYNqamoX19TOXPm6C3+xoXbJf/BsH8wrBS+eeH4EOxuf2bipzOr1tWcNzxwePHS7DfWSBho6CQ7QUFBzZo1y5cvX7ly5SpVqlSsWDE7O7slS5ZkZWVpK4qNQRuO+HgCSACRBy4dRm8hLIWwPI0uHrikehjU31+py0G9eqoGoJ8+pfh4Kl/e+CO5uZwqVKA9e4j38ReJqFs3ucINGlDnzpLPbm40dy6tXEmbN9O9e/r89tev5yrpjOuX4UZAuFWF1TW2uDhlbtpESUn6bDRvYNAxaOZmx6A3b2jFCho/JGE0tjxBXQIiYbcCs8rjo1pbc/w4EZFQKPGyy57EPl2qk3iO6vtMNWsSQG3a0K5dcl9HaiqtXk1du9LIkXT/fi49A2/f8ivpgUu30ZSAUFQajS1WyLxzJ5dUMhfM20CHhIS4ubkp5vv7+3fr1k1bacxA65e4OBo2jKrj1QrMikUJAkLQaDS2FESqhlbmwgWJqDt35PIrVza+BTSjNH++UZ8DIiK6fJnc3ZWa6WA0JuA5ai2rtYv5eWTHvP2gHR0dX758+eXLF07+5cuXK1SoYOjWGVKIcO0adu/G48eSnORE0e+t/Lz+8XyJmlOw9hLaOuFGY4Rsxeg0FNRQrHQ2oUkT3LmDAQPg4YEFC+DmZoBrMGeKF1d1dskSWcA/Y+HmBj8/iESyrXil+MGjCYLb4lIKCs15MTSrbj3s3g2RyBhqfl8wN7vvgowM9OyJM2ckh/MnxS+u8i8tXftX9PsI2C/Ggo0YHwVbbcV6eKBOHdlhkybYt0/yecWKnGudp5g2Dc+e4eBBpQUmT8aECTC6y4RAgAMHsG4dAgIA4MIF2Sk/eDRGSBec8SkwH0OH4o8/sGABevWCQGAsbfM8putmd+vWrWvXrnEyb9686ejouGnTJkMqmwdZvx6TJwNAA9wfi82DsLcQUt7YOc39MvkEeugcGv/BA6UuB58+wUz/IImjJ1tYoEgRNGyIEyf0JnnMGGzZoqrAP//g55/11pxeWLmS6+E+axZWLBPh2DHMn4+XL1GvHn77Db17G0lB45NH3OxGjBgBICsr69OnT7a2tmqdoMuXL9+oUSNO5p07dyIjIw2lZR4lOhoBAWiIe0swvxPOJaHILgzdiPFPv+QoEHOpUjh/HpUro1gx7ik/P7RtK/mcPz8yMnLSTm4TGyv58O0bUlJUFtUS1dYZwP37JmegZ83C8OHw9sbNm8iXD926YdQowMICvXujRw/s3YvFi9GnD1q2xO+/k7vHkydITES9enJLZhi6Y6CxbSmPHz/+/fffxZ9PnDhRqlQpa2trCwuLoUOHZmRkaCttypQpffv21beOeZboaPL0pFp4fhi9RRBEo9RMrCyOOD3Objk7U2IiCYV0/TqdPk3Ll1PLlsafczPTtGCBQR6DT5/o2jUKD9e/5IgImvlrhne9rbHFKhDwqGTr1rgmvhZfX/03Z5qYtxfHlStX2rdvT0RJSUklSpQ4ffo0EX358qVDhw5//PGHttKYgdaKKT0/bsHoTFglosgKzCqBWEOYldatqUQJ41u3PJCeP9f/MzB7tkz+b7/pU/K3bzLJ+ZAxvdiWMDgSEAgnV1wBKC1Nn82ZLObtxSHl3bt3derU6dKlC4AyZcrMnj37+vXrudb690BmJp4/x+fPAICoKMyevfxYjZ/x704Mr4Y3s7EiDiUM0W5AwPe1DtBABAaiVi31xbTC11dutnbpUvj7a1Tx0yf07w+BAC4u2LiRv8yhQ7LPmci3OmF0Fbwbgy2VEXoFbpfQ9v3hOznQnQEAuWegK1eunJCQIPxvUfCbN2+Kq/Y8YmhDYCBcXVGnDn50jDlcZxFVqYq//tqNIeJ35gvsjK0gQw2ar/DWnMBAbo7YN0M1QiEGD5Y4nAQEYMIE2cbh2QkL4+ZkIP9WSMz0D3hSc0gztG3LNs7JCblhoP39/e3t7Rs3bvzx48cjR44AOHTo0LRp00aPHp0LrX8PpKejVSs8vJk8Cyvfomqv50seO3bAs2c+nbaEw9HY2jHU4+5ukFk1xa0IS5dWX+vZM3D8p8TxCEUiucDRnDjUUtJRYCtGT+nyBmvX4vFjNGmCtm1x/74WejP+w+AG2tXVNTY2Njg4+NixY+fOnXNxcQFQpUqVwMBAZ2dnQ7f+nfDiQdqvWBOKyssx5wrc6uFRt/TDMTbVFLxgGKaIkxPWrDGIZEXnN2lsJhUo+q6kpGDgQFhawsICo0YhKQkAunfH0KGyMsOG4dAhtG8PFxfMno1t+wtj8mS8eoXff0dICBo3Rr9+eP5cWj4zE5mZOl3Vd4WBxrbVkpmZGRcXp20tNklIRIcOUZcu1KEDeXtTZpqQduxIKV2eAF+0a4I70nkbZ2c6eND4E18sqU3v3hnwaXnyhPr1IxcX6t9f00nIlBSuhnXryh2OGiUrHBxMu3dTSIhKiTEx9NtvVLQoWVrSoEFxwa/69pWI6tOHoqNzcn3Gx7y9OIjIx8enXr16lStXnjNnjjRkUlBQkIuLi7aimIHetEnyZAsg8sKxSJvaBISXb+aGy4pv/t69xrc+5pgaNqQBA3KvuR07jP1UKXDjhsxdsl49Hp2Dgig5WUuh0dE0axYVLiwUWO3EsMp4JxZl7i+0eXtxxMXFDR8+fO7cuQcOHPj69WuHDh1SU1MN3Whe5d49ScSG1gi4hebH0PNbjCB2x3HvAUFXwBP84uXL3NYwb3DvHpo2xfPncHDIjeZMakdEMS1bIjAQoaHo2JF/d8QWLVC4MK5c0UZoqVJYsSLr9bt1NKkfDr5EzdWYbgXhoUNsrEM5BjL8Uu7cuZM9mt38+fO7dOmSmZnJetBakZpKnp4EkAPC92GACIIPqDAMOy0hNHp/M6+m/v1zqaEXL4z9eCnhzRv1ymdmaiczK4sAssfnLRhNwCV4lESM9kvWTAjz7kGXK1fu+fPnMf/tqLF48eJy5cr1798/Rb+raPMoX7/Czw9PnuCvv3DhdOZkrHuO2j1wYhVm1sXTfzAsC0pXzNerl5ua5kEOHNC9bsmSmD4dzZrJcsqVU1q4Vy8tu6K5RVSU+jIvXmgn08ICgwcjAvZjsGUA9jsj8HnRpvnePFdf87vE4Aba3t5+8ODBNWrUeP/+vThn06ZNtWrV6tmzp6GbNnd27oSdHdq2xY8/4uGffo9Qby2mXIFbXTydjRVJUOOWlZaWO2oyeIiNxerVuH0bs2ahTh3Uq4dGjbB3L2rW5Cn85AnatMF/7wcApKWZRAATxf20FH9mbGy0Frt+PQYPBoAD6L+qnZ9tgX1Mc6gAACAASURBVAQ4OeHSJZ10zOsYqGfO4eHDhykpKdlznj9/fubMGW3lfD9DHJ8+Sf5C2uLrHgwi4BWqd8Q5Q/zFVtwMhSW1qUgRnsxmzXQXuGkTEVF4uGQsC6ABAyg+3sjP4YkTMg1bt6a//5bTuUcP3SULhf/F/X//nurVIysr8vbWk9a5inkPcYipV6+etbV19pxatWp17tw5d1o3R8Rrt1og6Al+6IPDv2Phj3h8Hh313pC1NZ49U1/MrFd9du6st81VpYh9gaWI9yvIydIrcZd5zBicPi3J2b8fU6fqLlAvdOuGYcMknwMCEBODPXvg4QE3N8yahV27dJdsaQlJRMuKFXHjBjp3xsSJGDuWzRjKYSDDbyC+hx50Vhb16UMA9cTRFFi/RI06eMrpbZUta/wupNklW1vj66AiPXtGiYk8+cblwAGuPtruSRgfT9u20fLldP26ynJZWZLATm5u5uUanRd60AzN+e03HD6MyVh3GH0eor4zAp+hDqcMi4mtA5pMeeUmtWvLPh85gtq1jb+diiI3bnBzFON7qCA8HMWLY9QozJmDVq0wd67yohYWWL4cBw7g1i00a6bR37rvANN7Ir5vtm7FquVZ6zFpLaacRPc2uKzDTlRGoUABY2tgDkhHilxd4eMDkQhfv4JIsgK7UCF4ecmVHz8+tzXkoBi7w1ab53HpUrnD5cvx4YPKCv364fJlJCejeXPZWM93DDPQpsXkMWn7MWAivNdjUm8cSYW1+jrKKVYMueYsk56eUwm1aqFpU32oYsLEx2PZMoSG4soVVK8OgYBr7zZvRv/+ks9jx2LVqtzXUY6BA+UOnZyg1czRq1fcnKdPuTmJicjKgp8fXF0hEMBlVvPzS0JE1WtS9x7JC1Zqr3KeghloE0IU9c0PHj1xbCK8J2OdSPtvh+PzdPKkql1KTYr69VGhAvr3R0YGGjY0tjaGJC4OlSopPWtri/37kZUFIvz9NwoVyj3FFDl5EtWrSz7XqYPhw7Fvn2TPRg2pWJGbIxUI4M4duLigWDFYWaFtW0kIvYAAdBrlWOze1ROiboWXzA6qO5LSTcDl0FgYaGzbQOTlScI3b6h69VTLwl3hwzuJVLcuPXyofq6pe3dq04a6diV/f4ngbt2MPwPGSbw+auJUsCBVqGB8DQ2XxIGHSpWixo1p+nRKTDTqU6ecx4+5mt+/r7WQly/lJIwcKTuVkKDmRgkgmoUVIggiqznRly96vDT9YtBJwlzaNJahhlu3yLOrMEPkN/PiqeUteYs8fYr69TFgAPbvBwBHR9jY4PFjbrGTJyEUQrolr0gEHx+lzbq64urVnGuvNdl91Ozs8OWL7DAtDR8/5r5GuYf4P/63b/j2DSEh+PIFu3cbWyc+zp/n5pw+jZ9+0k5IjRoIC8OOHYiORqtWcsFOg4PV1CUIVmJWKCrveT8MLVrg1CnUzdE2x+YIG+IwAXx8RC5uL6NL1UwI9lzeUrXHrtg6AwgPx+PHaMlnzN+9k30WifSnp2HIbp3zMN268c8H7NkD04welj02f05wdMSCBVi/Hr17QyCQ5Vtp1jk8jD5rul5BaipatsTZs/rRyXxgBtrICHfuFnn1up3RwAk3QlEZwJMnKFpU0+o3b/JkZo/BZmWlap4wK0sLVVXjyHZuUYmPD88eUWI03Ccwl+nUiZvTpYs+5TduDCcn/lOcIIKtpjVFcDCqV0e3bli9Wp9KmDzMQBuV9estR/zsJ2rTFpdiIJvgS0wE/ttnSFumTEHhwnI53t48LxsAJ6f/dpjNMXZ2CA/Xj6g8zO3b/Pmennr7IvTIDz/g6FHZ4cGDaNBAn/ILFcLmzejQgZu/ciWuXUO/fgDQrh3On0fLloCjIwIC4OWFGTMwYoQpRmg1EAYa2zYQeWmSMGrCIgKOomcBpPFOkowapfUEVMOGlJXF31xMDB06JFd4+XLjz5h9b6lBA/78Xbty9+HTgM+f6fJlCg3VPjC/loif2MxMCg2l//bzUIJIRPPnE0BeXpSWZli1NIatJMxzEH0bNr30hkV7MLgfDqaDf43HHb5N66VOsq1aYdky7tn69ZWuRitZEn364O1brF2LdesQGqrK2YthIBwdkZTEdS6GXsea9MKKFXBwQJs2qFwZ06bpbTyaF/ETa2WFSpWQP7/KogIBFi/Gxo04eRIdO0r+aeZpmIHObYTpWaLhI0v9+6c3Jg7FLiGUzpU8fCiLUyPlyhVMnoynT+HuLpswlKI2zkyVKpg8GZMmoVKlvL8qxFgMHowBA/DLLxg7lntKvBHJoEHcfHf33FFNI0JCMGeO7HDzZn5veiIjWchffsHu3bh+HR4e+C/QfJ7FQD1zA2HWQxyxsfRz/7QT6E7APCzV5B+xsqBIpUvz5+/dq51KnOiRLOU8ubjIOZ5XqSL73KULpaZK7ry3tyTTyYl8ffX+rOWItWu5FzVuHLfMqlWSU87OMo/7XOXoUcqfnxo0MLqLtNlvGqtHzNdAnzpFNRyTLqKtCILx2GAI0/Dbb7oo9uSJnJAOHYxv48w6jR/PzZk9m06epOBgnptv9HDPvOzbx72EBQvkChw9yi0QEWEMRS9coEKFqFYt+vTJGM1LYGPQ5k1aGv7+G4O7xu8Mb98Gl0di+0ZoEQJHk6nz5s2RmoolS3RRr25dfPiA4cPRrRvWrcM//yh1fjJlDLq764ABmDVL08KnTnFzPn9Gt25o3JincLFiOVLMQCj6/Ig3QJFy5gy3gFGWO6F9e1y5gq9f4eyM16+NoYHBYQbasCxdCmtr/PZLzEW0a4Lgfji4E8O1klCrFoRCLF6sqkyDBihYUEcNHz5ExYrYuRM+Ppg8Gfb2KFUKbjxbhOce0q0deveGs7NGVQzqprZ/P1asgI+PRiPFnz5xc7KHFTU6CQl4+BCxsarKlCiB0FAMGwYXF/Tpg/v3Ua2aXAFLhY0wFXNyiaZNcekSUlLQqhUePjSSEgaEGWhDQYTp0zF/PuwRcQ0uP+BJN/gcRS/1NeUZPx6WlpgzB336yDJ//ln2uU0bblBHrZg9m5tz6hSaNZPzgc1lOnTA/ftYswYODiY0UV+5smwh3Lx5eK7ZNqfOzhg3znBKaceGDSheHD/9BBsbzJ+vqmSlSti5E1ev4tAhnuXdnJioAFxd9aimljRsiIAA5MsHNzcEBRlPD8NgoKETA2FGY9AjRhBAlRD6BlUTUaQN/DUcxHR0pHbtqGZNcnenGzeIiNLSaP16GjKExoyhPXsoPJyIKDqazp2joCCljs+akJHBr4ODAwUHk6Oj8Yd0s6cyZYzT7owZlJpKTk5ymdJZMt60bx/NnUtbtxrciVhz7t7lKnnqlO7StmyRCPHwoFu39Kelzrx/T9WrU+HCdOlSLrfMJgllmIuBfvuWAKqNZ2FwjEHJZrilm2kYOZKEQmrfXi6zTRs6elRrldLSyNubhgyhefMkJp6IFi40vtnVLVWtys2xtjZIQ/PmUXo63brFc8rSkr9Kq1b6fZpySmIiXbpE48Zx9Zw8OaeSJbu+mggREVSvHhUoQMeP52azbJLQ/Hj3Do1w9xpcLJHlgmu30Uw3Odu3Y80a+PrKZV6+jF69IBBgzx5N5YhE8PLCxInYvRv/+x8cHSVDpQEBuullfN6+5U4Mzpih5yb69gURli5F/vz8UXqUrS6Ji4ObG8aN0zQOFBE2boSbG9q0wZw5SE7WXWdF7t1D0aJo2xZ//809lfONgI029MxL2bK4ehUNGqBPnxxtZ2tSGMjwGwhz6UFHHQ+IR7H3qFgNr3k7WXXr0u+/a9SD691b1dnLlzXS58oVbsUZM4iIGjc2fl84J6ldO2rRgmbNoqgoysykQYP0KfzKFdkNbN5coyrly3NzevTg8QETiWjFClmBuXPlqgwcqJ+HUIybm1Jtnz3TZ0OmQlISeXiQhQVt3Zo7DbIetLlx+XLpIZ0ySjs4I/ANqvEWsbNTM5MuRfX2IseOaSTk/XtuTmioZEM8s+biRQQFYeVKHDkCKyvs2cPj5aYV1avDxQUdO+LCBdnE1/TpuHVLo+qKLhwnTmDECG7m5s2yudkTJ7Bpk9zZfftyNDWakIDHjxEfDwApKbhyhadM584IDDQt9xK9UbgwzpxB164YMwZ//GFsbXKMgQy/gTCDHrSPDxUsSA0a0Nevd+7Qn3/Sv/9SdLRkHw1p2rRJo41O3NwoLY1n7YM0jRmjkVL37nEr1qlDjx4Zvwusx7RypeRiExPp4kVauVJrCe3aUUYGEdGHD5LOuIcH/fKLftQbPJg+fJBoyJlUUEw6L7zIvgjwf/8jkYhHuDJiYighQS7n40fJfXB3p4MHdVTJOGRm0pAhBNCsWYZuik0SyjB1A713L1lZUdOm9O0b50x8PE2dSm5u1KYNbdhAgwfzvDk//EDLl9PcuTRqFA0YQCtWyPZDunmTZ5IHoDNnNFWtRw9u3UmTjG9V9Ztev5a75NRUun+f3r2jV6/o7l2aPZucnenHH6lyZZ66bdpIzFNqKrVqZRD1WrWilBQiIg8PVcWcnXV8+oKCuKIuXZJEf5Omli0pKopb8cMH2W9GlSrk7U2ZmZSWxn8fevemjx911DBXEQolASF/+SVHrk7qYAZahqkZaKGQzp+nceNo8GC62GMTWViQmxu3H6LAxIlKX04fH1UVExLof/+TFV6zRiMl4+K4o5zi5O5OnTqpsSnVqhnN2uqWunalV6/U3JDUVOrSRVZl8GC6eJESE+naNQoMJH9/A6rn5UW+vrRsmVxm06aykWInJwoJ0ehrVUQxfuz06fTzz9zMNm0kfxSkdOzILdO9OwUGKr0KNzcSiXRUMlcRiWj6dAJo0CDKzDRQI8xAyzApAx0fT40aSR7ZeVhKwHH0+PBKfZhaFS/wtGmqKmZm0tSpkpKdOnE7jLx8+KC0rS5daO9e45tUvSdnZ3VhhYmIKCSEfHwkHof378vcnG1t1TdRvToNHaq7hsuWyf4PubjQ3bskEtGLF3TvHtd0asXGjTy3gleBwEBZLWWbt65ereoS1P4KmhDi6fiePXN0c5XDDLQM0zHQsbGSf8oCiFZiJgG7MdgKmWPHqq/r6qr0uXdzU1VxyRK5wq1bq//rptiByp6MtfTD0OnwYS2+SiJycdFUcqNGsgHipCTdR6gzMig9nb5+VaVVVBTNm0deXjR/PkVF0fr1Ej1Hj+YZpiCiT5+4rTRrxt/6iROyWikp/GXWr1el/+PH2t1hI7N2LQkE1K2bRj/dWsIMtAzTMdBTphBAAog2YDwBG/GLBbIAKlFCsvxPBbNnK33unZxUVVR0mXr5Uk1blSoZ31waJZ06RaGhJBJRZqaanlNSknaSs7/jmZk6qhcaKpFw5QqNG0fjxsl59RFRbCy1bCkrX6GCXPWOHSkxkRYtonbtaOBAun1bUuvuXcnkc5cudPMmd2pamqQrlcT06cNTJjiYzpzhr+7kZGJLVDRh0yYSCMjTU+82mhloGaZjoMW2chVmELACszhPsOrteNLTlXZsPTy4hT9/poAAyRulaKBfvFDV0PnzxjeUxk3S8Yq+ffl7nUSUlaWdTM6/Ft0Uy8qizEzavl0uM7vn7qZNaiSULCl3GBQkqysU0vHjSnv39vb04IHcJcTEcF3Ipd5B6en0+DF9+kTDh0tOubnRo0eqnjrTZcsWEgioc2f9bpfFDLQM0zHQ9epRLxwRQeCNCYrvAG/w3+xkZVGbNjwvz7p1csWyT8FPnSpxHJImtUMcM2YY30SaTlL24AiFWghRHMJSPVbLm1avVjo9K2XOHO1kDhggqZiRoX7u18mJ58lJTaU9e2j5cqUB+FNTlf7ImQ3btpGFBXXsKNs6IccwAy3DdAx0p2ov41EsCM3zI13xBXj+nIgoM5Pu36fHj7kvQ0wMEVF4OM+b8/mzrJhqdwJNJgk5Y9YsKft36+WlUfWKFbmheIRC9V1dceralTZvprVr6ckTpXN3gMQPj4iOHNHu0qT/vXbt0qi82sGxPMvOnWRhQe3aye51zmAGWobRDXRqKk2cSEWQ+BR1ImHniDDeVyUrS+49dHGh9++JiP79V1bs4EEaOFCuoqOjXFuLFil9uzw9NdL2xQvj20STSsoMdFiY3N5UqtPdu7KKs2Zp0brY0ev2baUFSpem7dslw7siEf34oxbCZ8+WqDRzpkbljboJibE5cICsrMjFhZKSci6MGWgZRjfQYi+3Q+iTCSsXXM3+xNepQwANGybZ/sfdXe596N6dJyJa9+7cnOxjytJt63hT27a0aJFsJYsyAgP5//BaWOSGQTSp1K8f/y36+pV8fen2bZ6vgzdNnCipqGLw+qefeDLPnZM9QirSL79I5L9/r+mlubvLngRpIFAVqUMH3R7/PITYRrdurf4VUgcz0DKMbqAB+hV/ETAdfyg+91LvfV7f0gULuDnVq3NzfHwoKIj++ov27KE3b9S/aZ06abpIKnvn/TtM7dsrru4kItqzR+5mKkYxVUzSYEbx8drpUKkShYdTjRrqSz58SNeu0dev9Pgx91T58hQSIvej6+0tt2wkKUluBaCLC334QHfuUMWKkhwHhzwaJklb9u4lS0tyc8vhWAcz0DKMbqBbISAD+Y6ipwAixfdKugSW1/tq8WJuTnY/KnEaO1bu7PXr/C5QnJdZBVev0u+/08aNFBNDISHGNJHGTXPn8tycL190EbVtm0yCCpd23sTbs1aRvL3p5EnZoZOTLKDH69cUHMw/15WURGvW0LhxtH69xPhwdhsYMkT7Rz9PcuAAWVjQ+PE5kcEMtAzjGugn/pHfCjq8RI1iiOd9nbKvJuWEzliwgB484JbnRAHlOGkANGkSEamJonn+vFKF582TK8nZwPt7S4mJtG0bTZ1K27dTcjJlZNCFC1oLGTFC7i/LnTsGV/vpU/ryhY4cIV9fHd3DFBewwMzee0MyfToJBFoEtVGAGWgZxjLQ6enUu0fmNbRORJG6eCJ+xGvWlHvily+Xq5KWRosXk5sbubnRmjWSmR9pb8jFhS5cICKKiaH162n+fPL1lesriZO7OxFRbKxsYbHixFFkJL/OYWHckmXLGt9KmlRSHbQIoKpVydWVpk+n8HC6fl3We81OUhL5+ZGfH50/bxC3mZyHNVYcinF1zanMvENaGtWvT2XKKH2R1MEMtAyjGOinT6lBA1qDKQT0wSHOs+7gQP37q+rGKsIbaCYsTBbZQ5qGD5erJRJRQoKcWdmxQ2krBg36k2dS8eJKT/XowX9j09KUhgpKT+cZtsph0sv+Tf36ycns3t2ENks0Pk+fkrU1deumW20WsN+YfPyIunVR4/6hKVj7F6YeRh9Ogc+fkZiIDh20kCndHDo7U6fi7l1u5qxZcrUEAhQtCl9fXL2KESPQsydev0ZYGI+027exfLkWKn23iAPb86J4A9++RefOKFgQFhaYMgWZmXJnr15Fmza4eRMAypXj1p0wARERaNVKO/WaNIGHh3ZVeNm2DZMny/a4OnkSLVti4ED07Yt9+0CkhybMmDp1sHQpfHywc6exVVHAQIZfkfj4+CdPnjx48OBjDqLJ5n4Peu5cqokX8Sh2Ey1416SIU86jLyrKlAZY4CAUcuNDip2spTx7ZvyeqZmmTp1o7FiaP58n5LFIRK1byxVu0YLWrqX4eCKiqCg1ksX7CQQHa6GMg0OOIi+/e0f/+x/NnSuJXaci+NGcObq3kkcQiahDBypcWIcwfWY/xBEUFNSsWbN8+fKVK1euUqVKxYoVs7OzW7JkSZb2UbRz2UCnp1OtcpI1KQ4IV/Eu5RxFfwCxE/2rV7RsGf3+uyxMsOIGg5wgpZwY7SxplcaP55+LU+H1GB1Np06pEfv77xI5sbFKy9jZUf/+ks+dOtG7d7o/Tjdvykn+80/69VdV6hkgypu5ERZGNjbUsqW2gaDMe4gjOTm5e/fuU6ZMSUpK+vTpU2hoaHx8/JUrVy5cuLB+/XpDt55D7obQ4rDhNfCqDw5/hoOyYqtW6aGtHj3kDocNQ+HC8PdHjRqYOxcLF6JxY8k/sA8fuHU5Ww4+fqwHfb5bNm7EvHnaVdmwAfnyqSkjHQQrUQI+PvxlBg7E/v3IzERqKs6eReXK2qmRncWL5Q6nTUOtWqrKm/vulHrA0RFbt+LmTdMaHDSQ4ZcSEhLixhfk2N/fv5v2o/K53IN+PnwVAVOwhrfTUbEidehA//yjn90lRCLasYPatSNXV1q6VOLfqhhQSSSi+/e5mUuWyORoG5uNJd7E+wUpCxvdv7/6RSvZH5Lr1/nLqI5NqMirV3TiBN2/z3NKUfjjx6qCKJnHDim5wMCBZGVFt25pXsO8hzgiIiIcHBwiFVxY5s2bN1G6ZlZjctVAX7kisrQ6iL6avMapqbKwDBMmqN30SlMUWxRHU8q+XLhNG7nVqq9fG9+65YHEy5s31LkzT2HxD+SDBzx7R/EK5I2z3Lo1iUT0/DkNG0Zt2tCUKZKYAcrIPpBVqRKtWyc3TKGoSVoaZWXRyZO0ejX99pvcKa18kPI4cXFUsSJVq6b5EnDzNtBEtHjx4hIlSvTs2fPXX3+dMWPGqFGjfvrpp9q1a+swW5h7Bjoiguztv5SsqWxNivShFzN5slz+4MH60UKxBy0dt79zhzZsoFOnuHutPX1qfOtm7mnkSFVfSloaDRggK+zsTHFx3DK9e8sJHDdOkv/1K/XqxdNi7dr0+jW9eyeX6eys1ErwRlzq1k3WEeYUyB7GNjGRW3HXLk0exu+GgACytJSFRFGH2RtoInr//v327dsXLVo0b9681atX+/v7C3XakiGXDHRGBrVqRUWKjGjxVPWb/PSppIbiKb3Muly6JCdThdezlL/+Mr6BM+vk6UlTp9LgwbR+vdKVeyIRnTpFCxbQzp38gRyio2XrP8eOlTkd9+zJ0+KIEZJ5KcVoLXXqUI8ePOHFlblkZC/58SOtWkW//879v375MreWrh7AeZcZM0ggoNOnNSmbFww0mZeb3YQJJBDQ4cPiXdtVJLGjhUjEcyrHQbIkiL04Fi7UdLNnzvJulrRKnMGHjh1ztLcTZ2A3LY2nxewhnEaPVqoYJ3zz4cP8xY4eVa+Vnx+3Vteuul9j3kSb5YXm7cUB4NatW82bNy9dunSHDh26d+/+ww8/lC1bdunSpSKRKBda15oDB7BhA6ZPR+/eM2eqKlixIgoXBgCBAH37yp3q2BFFiuhHnerVMWcOFi1Co0Yaldd2KQQjO9euyR2eP8/N0ZCnT3HzJpKT1ZcsWVL2uXlzpcX275c77NiR3yujfn31LTZtys3p2lXyIS4OEybAzQ1ublizBqb5guYGBQpg/34kJmLMGCNrYiDDLyUpKcnOzu7AgQPp2f7zP3v2zMnJac2aNdpKM3QP+sXRx2lWhe+XcJ02OTMsjIRC+vyZGjZU2q/58kVSMTJSNi3j7q61B+v58zR1Ks2fr4fd7P/3P+P3Q803Kc4BLltGd+/S5s10+jR3uD8qiq5eJU7n6e1buSX74hjQIhG9fUuvXnEHoJ2caOlSCgiQ1M3Kkhvdzp4mTOB+0du2ccv89JOmD8nt2zK/+4UL6csX2reP9uzhunmsXq3145enEA8Xbt+uupR5D3GYkZvdi+CEZ6gdgbLZ16SMGkUHDih9nzkBDb584e6XrAmcnVPE6750QzEOteYbhbAktlYqzrq50ZUrdOwYvX0rFxd/8GDJSMjx4zy13ryR7d7QvDnVr89TRrofChEdOkRNm3ILHDnC/a4jI7lljh3T7mlJSiKRiLukhXO93zUiEXXsqHZ5oXkbaLNxsxOJHtXomYF8rRDAeUx//ZWWL+d/gkeNUr8xoGqSkrgyc7LbhWJEU5Y0T9WrU+vWZG+vS90NGyglhf8U7+7Aikm8Xp93G53Jk2VPy6RJksxff6ULF2Sx+f/8U8dnRrV63zvi5YUtWqiYizCogbYy9BBK2bJlx44dW6tWLXd39woVKlhZWcXFxQUHB6enp/v6+hq6dS1YseLHV8cmYf11cAdx79/HmjU4dQpBQdxK27Zh2zZ8/Ijy5XVslrMIEMCFC9ycpCT88w/evUP9+hg4UNWitapVdVTje8beHo6OCAnB69d4/VpHIQEBaNGC/9TlyxpJePYMjx5h4kRuvr8/2rSRfJ48GTt2SD6vWYPkZAQEIClJ9wmPrCxV6o0cqaPYvIOjI7ZtQ8+eWLYM8+fnfvsGN9AA5s+fP2TIED8/v7CwsMzMzJo1a/br18/FxcXS0lJFrbCwsBcvXnAyP378aJCpxStXMH/+60b9vO8qvB8AgClTeKyzlN27tV4cLKVKFW6Op6fcYUICOnXCjRuSw0OHcPo0rJR8b0WKYMUKzJ6tozKGpmFDtGyJ5s3RuzdWrTLKA89DRAQiInIqpHRpfivZuTPOntVIQvXqPNYZQEaG5INIJLPOYrZuxd9/52g6WsUr2Lkz/vhDd8l5By8vDBqExYvRrh2aNcvlxnPDQAOoWLFi7969P336JBQKbWxsymvQ4QwPD7+rEH/z69evRYsW1bNyYWHo2xe1a1f23957FI4c4Z6vUwebNqkS8Pmz7o1bW8PbW+7NXLpUrsD27TLrDODCBZw5g+7dlQrs2BHnz+PDB1hb4/lz3RXLIU2aIDhYLmf2bCxeLOv+z56NrVvx6VPuq2YQRozAnj3czHbtsHcvVq1SH91h9GhUq4a0NJ5Tr19L4ngIhTxns7JgkTNXrK1bMXo0N7N5c5w5w1+eCEQ5bdTM2LAB169j4EA8eKA39ywNMdDQSXZMOppdRgY5OVHRotJ9NB88oJ07qX17yRjc2LH8O8BmT3v25FSLe/do+XLauFHmFiIl+y6F4iQOXMmL5vtAGyhNm0bXr0vmTk+dosmT6bffuH4OYpYtM7Kq2qZy5eQOW7SgESPIxYWcnKhHDxo/npo351YRb7KTkUFLl5KrK7m68uxJMhQG0AAAIABJREFUWKYMdehA3brR//4n2zeHkw4elNw0zr7jXl45ffDE+PpSu3Zykv38eIolJNDw4ZICgwfzb8KbZ7l+nSwtZUtCs2Hek4Sm7mY3bhwJBLz+/enpsnXVnA0Gs++aPGSIpvtq68a6ddzXVcX6pj/+4BYeOVL9trN6TJ6eXF80ZWg4dWb0lC8fATR6NEVF0ZMnNHw4tW1Lc+dSTAwR0ebNaqqHhNDJk/T8uezCVfhBNmzIv+d3ly6SumFhsq5Dhw6augyJRLR3Lw0dSr/8omq507t35O1NGzfy7+xFJLPO4tSvn0at5x1mzuR9/czbQJu0m92+fQR5FyclpKXRsmXk5kbu7rRpE2Vl0cuXdPy4mh219UJyslyo6B49VP0ezJ7NfbcXL6atW3PVov3zj0bXZS4GGqCNG5VeheZCpJ4Y4rhavIZYWRJvTSnl61f6+lWjmyyGEyjm0iUt6krhXS77fUWRzsigxo3J1pazvNC8DbTputk9ekSFCpGbm6ZdPuORlka7dtGCBXTsmJre+rlz3Ffo6tXcNmdTpmh0UYbYX9VA6eef+S9BmV+dstSzJ334QH37aq3AwoXaPjIyFOOgtm+vixzeMLa67TJuxvDtXsjc7AxAXBy8vGBjg4MHlbpEmAwFCmDIEI1KduyImTNlGwj8/jtq1jScXvxoGGZ+9mx8+YINGwysjT5Q3GBQjLU1N6dGDbx6pVTOsWM4dkzr1vv3x5w5WteS8vEjN0e3187CAoMGYe9eWU7PnihQQHfFzJI6dbBsGX79FTt3YvjwXGgwN+Zi58+f/+DBg44dOxYvXjx//vw1a9b8888/Hz9+rIkvh6HYtg1v3+LwYZQpo0epSUl4+BDfvulRpNasXInwcAQEIDISCxbAzi5XW3dywtChGpW0skLDhgbWRnucnbFjB/dXbfBgpeU5xm7zZplrWt26etCnTBns358jO1i9OjenZ08dRa1bJ4s54+WlxrUpzzJ5Mpo3188uSppgoJ65WjIzM+MUw+iqQ29DHC4u1KCBHuRkY+dO2V+/qVN1FJKYSBcv0sWLOQ2G9+gRdelCALm4kNqYfPpK48dLps40hBM23rjJ1VWylm/3bp6z3bsrDZ//6RNt2UJbt3Kn7CIi9KNYzqegd+2SE6jb2te3b+n4cQoOpvT0729kg4N4mf+9e+Ij8x6DJiIfH5969epVrlx5zpw5Ul+OoKAgFxcXbUXpx0DHxVG+fPTbbzmVk43nz7nv1f79Wgu5d09OAu9WRpoQF2ccG6fte3vwoPHtcqFC1K8f7dghW8rLcTjLbqO15e1b6to1R+q1a6d1o8o02bqVDh7U8Yc/u09kjx6UkaEfrcyVmBjKn59mzRIfmXe40bi4uOHDh8+dO/fAgQNfv37t0KFDamqqoRtVg68vMjPRqZMeRQYGcnP8/bUWMmOGqkPNuX5dx4o5YccOrf+J9+olC3RpLFJSMG0aGjZEZKRkq9bwcP6SJ08iJUWNtCNH4OoKgQDdu2P3buzZg4IFc6TeihU5qi6lShWMGoW+fXVZZvHkCebOlR2eOIG//9aPVuZKyZLw8MCBAyAydFMGnx97/fp1vXr1+vbtC6BZs2YLFizo06fPiRMnDN2uKs6dg40NT1jcHFCsGDeneHHtJKSnc226nx/S03UZf+RdkGZoQkO1rmJpiRMncPYsbt6Evz935WGu0aSJ5EPx4oiPV1VS2fK5yEi8fInPnzFggCTHx0fp1t3Nm+PWLY0Ui49HsWJIScHz57CxydEm3zlB8Xu5dQuTJhlDFdOhb1+cO4fbt1XF8NYHBu9BlytX7vnz5zExMeLDxYsXlytXrn///ilqeyMGQiTChQvo1ElVGALtaduWmzNokHYSeA2xbrNDzs661MohS5ciMVHrWhYW8PTE8uW4cwfr1xtALW1QbZ379OHvDq9aBXt7uLrKrLNqJkzA2LHqi7m5oVgxXLyIwoXRuDGqVEGPHrIuvEiE9+8RG6tRizmkbFlujr19brRr0nTvDmtrHDpk8IYMNHSSnRkzZpQqVSo0NFR8KBKJfvvttxIlShhnDFq8m6YOI8TqePFCslVohw7k76+LhMWL5cYf//c/3ZWpU8cI47murjldueDvT+PG0YQJNGdObijcuLGqs3v3ytbODRrEv7I5OFi7FpXFMi1YkJuzZQtPKFrxmqpbt8jJSZIzYAClpubonqslNZVcXOTUePHCsC2aBz16kL09CYVmP0lIRA8fPkyR31zz+fPnZ86c0VaOHgz0woVkaUnR0TkSYhiysmjnTurcmTp3pn//5e5opzkZGVSpkhEMNP7bQCTnJCXRqVOGVbVqVTp0SFWB+HgiIpFIlR/F2rWGUm/DBjp6lJvp5sazG+GcOfq55yr49o1mzSJ3dxo2jJ48MXhz5oF4jvvq1bxgoPWFHgx0kybk5KQndUwUjjdIbqYtW3Kq/Nev3JBABk22tvz5fFFxeNizJ1dvr40NT2a1ajm95wxdSE6mIkVo3Djz9uIwLb5+xd276NzZ2HoYFsPt9Zk/v5ogzo0b50h+WhpcXXHyZI6EaEVUFKCwVrBPHwwZghUrsHmzmmVHOXmUatTQusp/UzlyvHmD+/d1V4OhI4UKoUsXHDliYci9db8zA33uHEQi/TrY6RcfH7RuDYEArq48W6toyI8/wslJr2r9R0YGnj5VenbOHFSqhKdPkZ6uo/ypU/HsmY51c8LUqdiyBR07wtMTBw6gcWO0aIE5czBuHEqXhsK+ETJKlsTbt2jfXpdGtd1/XUUgdKM4VjLQty+io2vnJB68WgzUMzcQOR3i6N2bypXTfXDXwCjuKPjypY6iHj0iD49c/fd99ixNmCA75AvgqgbecDz6SsWLqzo7Y4ZMDcXoQr16qdHc319rfQYOpK9ftatSvrzSUzmPSM7QhbQ0Kl48sEYNNsShD4RCXLqETp0gEBhbFX5OneLmKNvVQi0//ohLl5CYiOnTJTklSuiumCZMmCAX+ahXL4SFyRVISsLZszh5kt85bOtWtG5tKN0mTUJEhCrvw4QEREZKPitGOzp6VI18xXgXahk5UuvHUMXCJRP+T5inKVAAPXrYJiQYroXvyUAHBiIuzpSfZcU9jXh3OdKcIkXwxx8QCpGUhNhYRERg61a5AjpYFmUoLlTJvlPXkycoWhRduqBHD9jY4Oef5RbsHTmCMWPkyuuX9etRrhyEQlSowF9gyxbY20vWjyjuEslZ7vjlC27elAxeiylfXtUmZLxUqwYbG/XFGjaEszM6dYKPDyZORGgoZszAwIGYMQOennB1xaBBePNGI1EMgyANH2UgDNQzNxA5GuKYMYPy56eEBL1qpE9u3eL+dX30SP+t3LtHEyZQgwZUpozBBz2kdOzIU+DdO8nZHj0Mq4mGycNDos+sWXL52XchmT9flr94sSxfvNtG9mRpqaatpk3Jzk6NSsoiNDFMhczMkMqVzTgetAlx9ixcXFRNtRibZs3w77/4+WfJ4aFD+PHHnMpMS0PBgkhMxOLFCA5GTAxKl8aVKzkVq5YmTRAail270KkTbG1x/jxPmZUr0bkzUlJMxQnBzw/t22PFCqxYgVat4O+PYsXw88+oVElS4NIlLFkiK79gAVq3hosLwDeClJWlpi1NWLkSa9ZoqD7DGFhZ3atYsY3hxBtMsonx4QOePcOoUcbWQw1Dh2LoUMTE6OFP64MHmDFDYgjq1lXlfaF3HBwQHCyL4XD+PFq3RkAAt9ihQ9iyJfe00oSLF3HxIqZNQ/78GDgQjRrJnVW8hKtXJQa6Tx+5iEL6woj7sjM05EGFCoYz0N/NGPTZs0DO3Faz8eEDxo9H+/aYOhUREXoRKUfOrXNKCho0kHXTctM6A+D4HXXsKJuCy05cXO6oozV//only9G4Mfbvl8svWZJbUvpNVa2KkSP1r4kOvtKMXCY9Xz7DCf9uetDnzqFqVc0nxeLjsX49nj5FtWqYNElu35XISNl/3osXcecOzpzh95FITsahQ/jyBS1bSvpZucbdu7nanFpUbARlRGxt5eb6FBk4EL16IX9+yWGvXpg2Ta6Al5fs87p1CAvT3Xudl5kztSgcFIR9+5CZia5d8/xirO8GA41tGwgdJwlTUqhQIdW7maanU0gI3btHmZmUnEytW8vN1WQP3bF6NXcmZ8cOHoGRkXJlfv1VO5UvXZJs5l27Ni1axA2RHhdHs2dTmzbUrRv5+fFUDwgw/pybcVOxYurLtG+vvgzHCfrBA/LykuQ/fsy97SIR3bol2Sw+56l1ay0emCNH5OouX65FXUZOYLE4ZOhooM+eJYAuXlR2/skTWXiwVq3ozz+5r8rq1bLC06Zxzy5Zwqsqt9jz55rq++YNt26DBvT1q+RsVhbXsija6ORkroRSpYxvNHMntWqlZ4FSbxPNGTlS61bc3alhQ7mcFi20WFMl/jnPnqR7xDAMCovFkWPOnUPhwioWQkyZInPCvX4d27ZxC3z4IPusGOifN2a34vTO/9k7z7gmsi4O/0GwYe9lLdh1LejaASkWFEGwoOgq1rWv6FqxF9R1194rKra1iw0bighYsGIDGyKiiIIUKdLO+yF5GWYyIYVMEiDPbz5kztxyZpKc3Nx77jnyTwRL+jw8esQEwXj2jJurVDLDRcmSePSIiVK9eDHPLpiCR9Gi6NxZ9fuepeVYyYWNGzFvnlxxk11c0KMHFixATAwePmRdun0bvr7y9ihZ8ssXeevq0FoKh4G+dAndu0uLfp+czPV5koy9kDP/tJMTK3H1lCno1o2n2fr1uRL5d4Wkp/MIQ0PFLySnTXlX20xMcOUKkpNBBDs7BAUpvJki35GWhsBA1TfbvLnCVUqUgLs7TExkl9y7F97e8PfH48c8V+Wfu+/RgyvRhdUvABQCA/3iBd6+zWUDIW+ajJEjmdd9+7LSo+jpYd8+PH6Mo0fx/Dk2bOBvlrMxd9gwtGwpVcdPnzBtGuzsMGMGXrzgBlcTkZ1VS/Jrn0sMOZGlaNsWU6fizBk0aCC1pA5e9u1Tfpd8zt91XlxcoK+PI0ekeqb/+qu8fbm7s05PndLaiAY6FEGgqROBUGYO+t9/SU+PIiJyKeLqypq8E+X7Dgig7dvpxg0F5gFDQ+nSJaarqChavpwmT6b//sst6PvXr3LNUfr6MlUOH2bkPXvmlqo5IkLeOdD582niRM3PIGvVYW4u71vPS3w8z9Rw9jFoEMXGEvEtV4iOYcMU6+7rV9q7l3bsoPfv86S2DoUQdA66ELjZXbiAli35B6X/R5RWTjSx26cPJk8GgM6d0bkzU4YIPj4ID4eJCXf/AoAHDzBtGjP7uXQpJk5EVBSmTJGdR/nIEamXJkxAZCTKl8eECejQgZEPHowePfDgASpXholJbmMl+Se+T5/G8ePYulXe8oUBIyMkJWHVKvj7o3hxjBqFAQMUqF6mDK5exdWriIpCmzbw8cGVKyhaFEOGoF8/xnuP97NZrx7271dM20qVmG2oOgoIAhl+gVB4BB0fT4aGNHduHvv9+ZNsbZmhzfDhtHYt9ehBnTtTz54yQklkO+E9ekSbN9PRo9wkcpzIDzmP7GxG4eHk5kajR9OePZSeroDmoaEKDBg3btT8oFWrju3bqX9/luTQoTx+lHh49Ii/d1XlD9MhKDo3OwaFDfTx4wT8uOz/9m2evI7yaLlCQmjlSubU1JS+fGEal0w9l31YWhJJGNmBAxVTXh5v3+xDPdla88WxciVFRnKF2QGVVIiHB78CeR5X6FAHOjc75SG/W6lFy5S16Vi/PgwM+EP2yEMeo/kcPw43N+Y0IABLlzKn/fqx3EIkWb2adXrsGP+KvzQOHuRKatWSWnjlSlhaKtB4geTOHRBhzhyefFd5DADLi7QENNq2HVSH+ingBvrd7S/hadUzUUR0amuL6Ghl2sljcAzJPH5PnjABK0RuIRcuYNQobjGRG0BOL2wR794p0HulSti4kSXJGVlfEnmcw9SAsTFMTFCpkrr7XbSIme5v0oR7VdJ7Mu9Iy0/29q3q+9KRvyjgi4Q/wmN+gPUVv30bDg4KtBAfj82bsWaNihXz90fNmrCywqZNiIrC/v04cICn2Jw5ANC8Oa5cYclz8djj5c8/0bUrbt5EhQqwt0eJErkVXrgQX77ktnSpHiQzAAjH/PmoVw8VK8LEhBXU39AQly8zKQe7dsWqVarvPSmJX/7mjer70pG/KOAG2jAhJgas//NGRgpUDwri2TeYCy1a4OlTBcrfuAEzM55tJgMGwN4eAwagZEkAcHPD3bvMXsd585RxZ27WDM2aMafe3ujVi6fY9OkoXx7JyTyXfvmFm8VKGzAxUWzChxd3d7x5wz867tEDiYl48ABlyjAOMz4+WL8eyckwMcG8ecwfrPR0HDqE58/RpAmGDpW2NUpeeN8gHYWKgmygU1JQ8uf3WLTKlpQti06dFGhBNICVH4WsswjeTYCvXsHFhTmtVAnXruHMGURFwdQU7dop3Es2ERE4dQo/f8LWFl+/isMfv32LuDg0agQnJ3EGHy8vbsVRo+DhoXy/wuHoqAIDDeDYMdY6QU5KlWIFI/T1ZfaOXr+O4GB4e8PAAOnp6N0bV6+KLx08iIsXZfxZEWFiAlNTnoxfv/yClBS5WtBRYBFo8VEgFPLi+PKFfsDoX8zIuTIuP6mpmnQhEAJ/f1YXHh7czN9BQXTuHJ0/z4SOyj6OHtW8WwXvYWZGjo4qaGfWLHkfo7Mzt25QEBF795Do2LGDiOjePXJ1pfHjc3Obe/qU39lmzJg8v+s6BEZ9Xhz9+vX78OGDpn4qVE6Vsj+NkBSDitkS+RM8JiRoOKJuWprq21yyhHU6ahQ3CEm7drC3h50dz2hO2o52jePvj0aNYGrK7PtQDmu5s2LExnIlopVnybgZISHw8kL79tiwAdu3w9YWI0aAiKfN5s1x6RJSU7ny3bsF+SToyC+wDHTjxo1NTEz+/vvvdN5oPfmOmBgA5RuIDbS1NdatQ0wMDhzA7t3I/ZfI1RU+PkLpVaeO+IVkho5slEjUEhODxMTcCmT/+1aCwEDMn698dUH55x8EBOTJkC1axKwEykRylkwUC6VxY668aVPuD9v+/XBwkJqukHfO+scPeRXTUQDhjKjfvHljb2/fpEkTHx8fgQbteUGxjSrBwQRkHDv54AE9f06ZmfTgAev/46lT/PXCw/n/BdesqZp/5R4e4o6cnKSWSU1V4LG8fk3W1uKKAwdSfDx/sewyyh0PH1JICG3bRocPU3g4a2tl/j1MTCg0VIFHTUTJyWRvz7SQvbcwPZ169mTkXbtSSgp/p7lsR+RsXLSyUkw3HepHAzsJL168WKpUqZYtW/72fwTqXlEUM9A3bhBYQYZyfn9EB28gpA0bhLUI2Z1Ky3ui6BYyjuUdO5a/mLc3q9iGDbRkibxqm5lxs7oQUWQk/fOPYrd/967gNleeY9Ys8vSk8+fp50/FHnU2T5+Sjw/FxLCE6em0bx/17k09etD69fTjB//M8pw5Upv98IGJr2RmxpO0RYe2oe5gSbdv316wYEGrVq1cXV0NhcyHKDiifWAVmTloyXxxnz6hZk2uMD5eKI3s7bF+PRPbyNwcgYHYvBmRkbh5kymWQ2V+UlKwZg1u3kSxYhgwANevs67u3MmfLbtnTzx7hiNHkJYGe3uYmwPAwIEICkKtWggMxLx5/N01aYIdOyD5WahRA66uCuTNs7PLkwuKCrGyQs+eeWqBN0g0EQ4dEk8lXbmCkyfh7s7NrgCgXj2pzdaqBR8fhIYiPR3NmsGgILtZ6ZCDnNb68+fPLi4uVatW9fDwyJI/yKYaUWwEvWMHAfTpU7ZAMvYjb+Chy5cFGbUFBEjVdORIbuHsBFe8DB6cW0eiCB6KkpVFhw5R377Urx9PdAgvL6kVR4+W9wk8f04JCWoaI3NCyHKOz5+VeUREFBVF8+fTsGG0bh0lJ3OvchIDArR+PYWHU8OGjKRLF/rxQ8nedWgh6vPiaNq0aalSpUJCQkaOHKlXAMJ9i0bQObZpT5rEur5sGf8IRTJ4hUrIZduC5K65Fy+kFv72jbvNr3Jl1mnOKKlyEh6Ob98wZAhOncLJkzzJOI4dk1p30ybMn5/bbnhzcxw8iPh4NGvG5IURmi5dEBjIDWMvws0N1aop02ZUFKpVg7s7DhzAtGlwcODmvpHc+/fqFWrXxsOHWLMGo0djzRpcuKDYbikdhZqc1vrhw4cC/Q6oCsVG0NOnU6lSHFlAAE2YQKNH05kz/JXS04Ua03l6StV0wABu4fBwIqLPn2nqVOralcaPp7dvxYVfvOAWNjWl4cPFr+fMUWxe9cULVgrzbt3owQPy8uJ2wUluLUl8PC1cSN2709ChtHEjde9OADk60rNnTJnbt4V6ttWr8whFU/ljx7KE7dop8HA4LFrE7eL8eVYByee2ZYvy3enIF+jCjTIoZqBHjKA6dRTtQrj9KY0b04gR/D4DHPcS0faE+HjuhpGPH4n4fkKGD1f0LhksLHhUlYwivXevvA1KC1f96hVPR+vXq+bZtmhBxsY88qgoiotjfv+srenVK+Wf1YgR3PY3b2YVyMwkBwfmqrU1N/a3joKHLtyossTGppWqsHs3Dh/G9+/yVipWTKjkqqGh2LcPjRtzZ1ri42FggKAgzJyJkSNx4IB4ie/sWe6GEU9PADAwYK07WVrin3+Y02vXYGsLS0uMHi07HfWXL6zFyWyCg3HtGhNlbf58uVJ1BAfDxgaGhtDTw8qV3Ku8++aNjPDnn7JblsnTp/zBlU6fRtmyOH4ccXGIjoaPjwKpeyVp1Yor4UT+09cXzxEtXoyDB3HpEn/GSx065EUgwy8QCo2gvzXufAXds4czwcHy9hIZSXZ24lomJoKMps3NxStFq1czwuXLGQW+fOHxYJs8mVEyPp6uXqW7d1mJCDibuc3NeRaychIfz69etqPu58883nW8/PjBHe9nu3uL4O1o1y6aN0+QJyw6slPSqISUFPHUjegYP16VjevIp6jPze6jlGBlmZmZdbJ3v+UTsrLwLTQmBkzsSDc3nD8vV90aNXDuHLy9sWIF/P0FUe/WLUyejE+fWHFE581DnTrw8BC7zeVMQiiiY0fmdZkyTMiebPbt4/bi74/u3aWqUaYM+vfHyZNceXZsIPkX0x484I73T59mJUfv0YMbNBXAH39gyBB5u1CCXFNRKkzx4vD2xsWLCAtD27bKLMbq0KEQLAPd/P++nYmJiVlZWSVLlkxOTi5SpEjlypU/K7H1WKNERKAiYnIG4rhwQYHqUVGwtVW9VjnhGFMRixYxYdrv3kXjxozbg4sLBg+W0aZkmAhJCYddu1CpEstv+uJFHt9wmWRlcSXZQScyMpCVhenTeQw0wONerUIcHJCVBX3VzeQVKQJ7e5W1pkNH7rA+uXFxcXFxcTNmzNi2bVtqampSUlJiYqK7u/skzqRpfqB61azy+J7TQFtZKVCdd2ZWDXCSaISG4vlzHD+OoCC0awcXF8yahffvpVbPGRVThMzwquXLY/t2ECE9HZ8+gUjJMMSieBQ5sbdHQgKGDYOhIYoVw6hR6NMHVatyi0nmkZGfcuXESWck6dsXo0fjl19QpAgcHdUU/j8jQ2qcDdUSHY0LFxAYyPO7qKNAITnr0bRpU46kjuK+EAIh/xz02/uxBEzBhuwZw0mTFOhItMdFGw4iysxkBX8A6PhxfrXT02nYMKbY4sUK3HLeCQpiNp0vXEhZWTRqlIy7c3UlIrp6VbwlmnOb8hy7drFOf/lFvLf/779ZcgsLyswU8N6/fWPCkA4dSt+/C9hXzu0wVlbc7eY61Iy63ewaNGjg7e2dfXr+/Pm6desK1L2iyGmgHz4kh19fE/A7DmZ/lIcMkbeXnz959hxq5BDZrzt3eC7t38+vPMdgHT4s712riqQkcbCRrCyp99W2LfXpQzt2cFOtJyZyS5YvL+MR7d1LISE0ciRZWdHkyWJPROKLDBUSIuBdDxzI6svFRaiOJB/RxIlC9aVDHtQdi2PTpk2jR49OSkoqV65cfHy8oaHh7t278zJIj4mJ+ffff69cuRIREZGRkVGhQoW2bdtOmjSpS5cueWlWGh8+oE0bdMQ3ADmnOORM/Hrzphaltf77bwD86QqHD2eyrqSlITgYenpo2RJ//MEqtnWr7JlrSTIylI8CIUrTBSCXvaj37+PSJdjYICUF587h61eYmaFVKzx8yC0p0z/y0SMMHgwPD3z7hqVL8fvvMDBAhQo82W2Em3xIT+futPT0xN69qpz7jojAypUICeHZhZjLplMd+R2eb2HPnj3Dw8PfvHkTGxtbvnz5Bg0a5CVkUkZGhoWFhZmZ2dq1a2vVqmVgYBAbG3vnzh1nZ+cdO3bYC7DgcuYMAFREDNgGevhw2XVTU7XIOnfqhOBg+Ptjyxb+AklJMDJCSAj++EPsbSI54+zvr5i1ff8erq44exYAZs7EihVKWurUVKxfj5o1pfpi9+yJtWtx4gQCA8WS5ct5tpjLZONGZGZi/XoMGsQNGpUTc3OeeM2CwhuYXzm+f4ezM/OgOOg2jhdkcg6nIyIiMjMzI/hQeogeHBzcsWNHSbmXl5cCewL/jzxTHKIQmi7YT4Ax3gHUoAHduCFX+8eOaX5aQ/7j2DEi4g9omX1YWCjweLOyuHM7y5YpUD0nnL/8vEeNGip7FLlHMe3Rg16+VPJGlLvfYcNU2fjevbndXS6ZtHSoAfVNcTRp0uTdu3dNmjSRtOM/lM3rULx48YSEhMzMzCJFiuSUx8XFFctj0mMpWFlh0SLWCHrHDrnGxW/fYvx4ITQSismT0bYtTzTLnCiUBiUsDL6+LMn168okUvn4kfuXv3lzPHvGLfbpk4x2LC25+kgjKkrqpfnzsWyZXI3khS1boK+P//4DgKFDsXGjKhuXvLtOnWBkhDJlMHFw2Jp7AAAgAElEQVQiunZVZV86tAqWgRZZYaVtMS8NGjSoVauWubn5kCFDateubWBgEBcXFxQU5OnpeVb0R1rVmJtj5UpkuMVmwCARpd3d5U03N3mybK9hrSI6mt9H7c0bXLgAfX306YPatXkKSCMXX2aFkDQolSohLAzGxixh9eoyMnt5eOQWOjknuWxIadZMrhbySKVKOHIEnp7Q01N9EGfJmaupUzFwoIp70aGF8H+UYmJiAgICoqOjq1atam5uXq5cOaU70NPTO3/+/H///Xf58uWTJ0+mp6eXL1++devWQUFB9eT88inOnDn4+fY7TpaPeauXS96/nKSk8ITz1358fTFqFDw8GImbG+rXx5QpyrRWvz66dIGfHyMRBfVXFEmb2LAh6tbFtWus3Y/r1sHZmTmtUkWcfTUb+UPebtiAQYNw9CjPJcmRu3AItOnGwgKzZjERV8aMgZOTIB1JEhiIQ4eQno4+fWBnp6ZOdTBIznp4eXmVLl26c+fOdnZ2nTp1qlChwrVr1wSaYVEUBWJxTJlC5cvL33JGhubnlJU7xo2jtWvJ2pqsrWndOqnB5OQkNJSZ1J40Sd5AHJKcOMFoaGlJX7+K5VFRdPgwHT1KsbFERK9f07RpNGAADR7MdZo+d442b1bB8xk4ME8PRLXExdHly+Trq0yqrTdv6OxZevFCALWkcPQo60n+/bf6us5HqNsPumXLlk9zpEK7d+9emzZt8tLHt2/fZs+e3bp160qVKpUrV65evXoDBw68efOmEk3JaaCzsuhJb7d0PUMLC1q8mJKS5Go8O6RyvjvkjwMlJ8nJXA9lJYiOpnPnyM9PalP79vHcy++/07p14uDXS5eq4OEsWZLXG1EVOVNQmpmRnF/qe/do3z66dUtg5fiQDEWb909FwUPdBrpx48YcSZMmTZTuID09/ddffx03btyNGzfevHnz/v37hw8fbt26tXr16mfPnlW0NTkN9JYtNA/uBBgiTfSd5+XlS1q1iv75Rxwj+MgRzZta5Q5HR0UfpOaRljAXYLb8+fpKLVO2rFxPxtyc4uI0ep854Ojm4CC7Ss5sAwMGqNs+Sj7PHPnjdIhRt4E2NTU9dOiQKCdhVlaWp6dnly5dlO5A/W52RGRlRVOxjoBy+C76YIWFccucPs365J07R4cOad7UKn1oOZ8+0a5dtH07vX8vlsycKfVecnp1Sss7/uIFXb1KCxfS1q20fDlPgcaNydNTi+Llf/6s8LsmmRtz3z616Pp/evTIZx8zjaDunYRbt251dnaeOHFihQoVYmNj69Spc5R38UU+1O9mB+DGDdRHKQCl8CMO5QAsXCiOdp9N376s05kzlfEn0xJattS0BrkSEAAzM+b03DnY2eW2AJhzu8rChRg/Hq9eoWZNHDuGO3dQsybatsXOnShWDL//jhYtkJyM8+dx+zarkWHDMGyYqu8kD5QqxZVIRrbiILmv8sEDufZbqQp3d1YAQtEWMB3qhMdA169f/9mzZ2FhYV+/fq1atWrdunXzkkBW/W52AHr2RNIlIwBGSBJJIiJYBRITuVVCQjB0qEDqCE5wsIqDaqqWhQtZp/b2IEKfPqxEMNls3Aj2TzmqVEGVKgAwezYArF7NhJletQre3ujZE35++OMPJoKrrS3++kuVt6A06emYNQvr1wNAxYriPMYiatVCTAwqVpRWlcd3ULXhrWXSrh2+fsWFC0hLg42NYi6bOlSD5KC6YsWKovkNVZGenn7gwIGhQ4daWlqampra2dktWLDgbXYOVOm1YiWYMGGCPFMcd+9SH3gR0AYPRH/NevdmFXj6VPOTEqo9IiPz8hYJCG/IpG/fiIj27xef/vYbOTvTjBkkc+VYMh+jtTVzNSyMTp6kwEBS6ec3TyxYIOONe/JEat0fP8jMjFX4yxc1qq5DPtQ9xTF9+nQ3NzdHR8eKFStmj50bNGig9G+AgYHB0KFDhyo4QD179uy2bds4wlevXjWUI6lc+/ZoZVoKASgF8aabXr2QkIAyZcQF0tMV0iUfIH/qkzyyapU4u6C9Pf79V3aACz09rm81/h+4ysUFLi5ITVUgcZ/kxpac8Tfq1kXduvI2pR5u3ZJRYO5cqYl+jIzg5YUNG/DkCRo1gqsr4uMRE4OGDVW/F0aHliJps8uUKVNRAqV/ASIiIk6fPi16HRoa6ujoWKdOnXbt2u2VP010DuT3g06+cYeAua0vNmvGDEDq1ydLSxozRvMDXtUeu3Yp8SyVYedOVr9164rdmXPn8GFWrQ0blFcgM5N77zY2yremBuSJWysPkZFMAFUzM3r2TGC9dciNur04Tp48yZFsyMNX6saNGzY2NkSUnp5er1696dOn37lz59ixY/Xr1z8uLey8dBTYqPL0KQFPFx3XuPVUw6G2f/S2ttyuO3SQy/crIID+/JPGj6erV/Oqw4EDLAXu3ctrg4Li5ibjvevaVa52nJxYtXJO7OjQLGpNGvvx48eZM2fWqFEjW/j9+/d58+ZNUW7vcA5ev35dqlSp1atXA+jQoUOJEiUOHTo0YMCAPDYrFSMjAKEPk4RqX5uIjc1trUmFSIZUvnsXfn6y04l17qyyFKtDh+K33+DtjZIl4eiovrkd5Vi0CHFxkJirY5gxQ652jh9nnV6/jthYeUOc68i/sAx0SEjIxo0bIyMjx4wZky00NDScOXNm3nuqWLGiAXvmLF3QmeBSpQCULaLKwE9ai7e3gC4okZEwNBT7UdjY8ATP+/BBdiNpadi1C/fvo3ZtDBiA2rVRtqzyKjVtiqZNla+uTooVw9at2LQJz57hxAmkpqJ3byQm4tw5lCoFFxeYmCjZcnZiBB0FGJbF7NatW7du3VatWjVb5NCkIh49ejR48OCyZct+/vz5ypUrPXr0uHv37rRp0+bNm6fCXrgYGQFo3ahQjKDj4gRpNiwMY8aIV+Hq1UP79rC0hIkJHj9mFZOWtjWbzEw4OsLbW3y6dCkA9OiBNWvw/zzyBZwiRdCqFVq1AoDHj7FiBa5eBYCqVeU10AsXip+biJEjFVhZ1ZF/4VkMnj17dlJSUnR0dGaOP7RKe3GYmJjs2bMnLi4uPj6+Vq1alSpVAvDhw4cZM2aMGDFCuTblokQJ6OtXLJ505w6WLcOFCwJ2pXGUizknk4kTGR+Jd+/w7p043nFO5s1DixYy2vH1ZaxzNleuoEUL/PILhg6FtTWaNUPNmqpQWrv58QOtWzOnc+agWjXx3pOsLDx/jpQUtGiBEiW4FRcsgJERLl1CVhY6d87Hm6p0KASPgXZ3d1+6dKmRkVHOvX/fvn1TroNy5crZSYQpdFJDtEQ9PZQsiaSkDh0wfHgBN9B58IGUSlKSjPirdeuiUiUEBmLrVkyYkNvOwPfvpV76+BF//y1OvWhlhTZtUKIEoqLw4wfatoWJCerV40aRztfcv8+VnD6N4cPx5QsGD8aNG2JhYCA3BrSBAWbNwqxZ6lBSh/bAY6APHz788ePHKqJJR8F48uTJmjVrPDn7r1XH168olml0ZM2P8Wv4l7DGjEHp0li3TqD+1UfXrjxZ6eLi8O0b6tZlOcx+/oz379GkCeSJkS0ztPH792LLKzIrEydKLSnnTvQbNxgLBTCj9T/+wI4dCsSG1mZ4UyL4+WH6dJbt7twZWVny3rJCjuQ68hc8u4ONjY2Fts4AUlJSPsizuqQso0fjW4qRaKt3zq99NpaW+OcfdOggnArqoEoVrF3LkmRmYsIElC+Phg1haIijR3HnDjZuRJ8+qFEDnTujQgVs2IDYWBw4gN27ER7O33LRojyJPKRx8mRuV9u1y818y2TXLhw6pHx1raJdO67k7l1YWPCMrMPCZLf28CG6dUOJEtDTg7u7ajTUoVXwjKDt7OwWL17s6OhYKkd8F6XnoIOCgkZmh07IQUpKSq1atZRrUyaxsTh3Du4olR2Lo3RpbvyNoUOxahWePhVIBTXx66/i8emlS/D0RGIiwsNZN5UzZUk2U6di6lTmdNQobNzIMwy3tuZGIJKG5MCQw5YtKFcOK1bI1Zokfn75OFJKTkqXRlAQZs9mJve/fOEvKdOF7scP/PYbc7pgAWrU4E+BpiP/wmOg3dzcDAwMNm/enFOo9Bx0vXr1EhMTV6xYUadOnZzyFy9eHD58WLk2ZfLzJwAkwSjbQEtGRwLyvXUG0KIFMjPh6ootW5RvxMMDr1/D25troyXXHsuWRXw8Twvy5P3Ly0pmpUoAcOECrl2DkRGGD4ccG/61lLZt4eOD5GSeX8RshgyBzDRzQUFciZeXzkAXOATaAJOTmzdvtm/fPoUdmvf27dsWFhaKNiX/TkIrK7qKbgHoLNp5Vb685vf7qfzo2JE+fSI7O9W0Zm9PISHcxzh5MlOgeXOpFePjmSrfv9OUKWRpSdbWtHMnI09JoSZNlNTt5UuaN48lCQhQ9LOjXSQl8d+psTEtWCBXDqDr17l1+/QRXm8dEqg7WBKA9PR0f3//b9++OTk5JSYmli5dOi+/AV26dLl48aI+Oxpmo0aNlixZkpdmc2f7dkSbljL69lV0+v27cF1phlmzsGQJLl6UGmpHUc6dw7lzOHkSRNDXh6kpMjOxaRNGjMCDBzA2Ro8e/BU/foSbG6KiULo02rfHxYuMz8z168jMxPjxAFC8OLZsQdeuUhVo1gz9+qFOHZQrh/Bw3L2L6GhUqoS5c1GjBpYvZxVevjx/e+ZI22Zy5w7kXACSnM52cMiTSjq0EUmbffv27WrVqrVt27ZSpUpENHjw4F1qC8YjCwVicRDR779/LNFA4+NcIY7Gjen2bSLiTyaiwqNaNRU0MnkykyN19GipxXIJe/TkCU/5/MiTJ3TpEi1fTsOG8dyRnZ1irT14QN26iesuWyaMxjpkoe5gSU2bNr137x4R1alTh4iio6PzkpNQtShmoKdOTSlipIcsjdtTgY4vX+j4cc2rIc8xbx7ztpw/z1/m+HF6+JD27KErV5i0hCIkJwTkSeinVSQm8oSa4hyiH11FSU5Wta46FEFQA83jZpeZmdkux9+nypUrp6WlqXFMrzqaNCmemVQbAjrzaZYbN5CcrGkl5CMgAAA+fcKpUyhRApwYWTVr4vRpBAWhTRuMHo0ePWBri9RUpkDJkti4kVWFM+Oh/SxbhosXcytgZ4eOHZnT5GT4+ODaNfyQFU5GctuhjgIDj4GuXr36zp07s/d5Hzx4sHY+zXXTrBmA39u81LQeQpGQkFuYNG3jyBHUrIn+/dG1KyIj0aePWD54MJ4+RZ06rAxYly9j0yZW9T//xKNHGD8eLVuic2ds3IhPn9SnfN558CC3qzY22LuXOX3+HD16oFs3dO+O0qV5vKR1FBYkB9UvX740MTEpUaJEkSJFypUr99tvv4WGhgo0gFcUxaY4vn0jIGv1mtBQGjpU83/zVX5w8iFpyTF1KqWlUbt2LOGsWdxidnb08yelpYnfqz17uAWcnLjvZ1AQq4C5uVzeDlqCoyP/43J3p7dvuRG9bWxYZSwtNaS0DjlQ9xRHkyZNHj58+Pjx48DAwODg4Pv37zdq1Ej9vxwqoGJFVK6sF/KyUSPuf+qCgb+/pjVgM3Mmbt/GunXiHYz29mL5lCnM62zOn8eZM8yGcsl0qJJb6XKOMQHcusXNpKXNjB3LI7Szw+zZqFePtas7K4sb09XXV/ZEh44CCdfNLjY2NiMjo0qVKiKj/Pz584SEhDLZufzyHc2a4cULAA4OaNOGJ4+9PPTti9OnVaxXgaRZM3TsiMREbNmCkBB07ow9e1CxIvT1uVnVRWzbhoEDxa8lQ9lFRGDqVNjYIDMTNWuidWt8/coto+z2KQ3QqxcuXsSWLUhORqVKaNUKLVuid2+eXOy82dl10Z8LKTmH06GhoVWqVNmzZ0+2ZOHChcbGxh8/fhRoAK8oik1xENGECVSunOhljx6a//tfsA93d/rxg8zNGYmpKSUkiN8KBweeKq9eia+Gh8tovHdvql+fK5SVGj6/smoV6zZz+sDo0DbUN8Uxc+bMkSNHjsqxXXTJkiX9+/d3c3NT+w+HimjaFHFxiIqCHMENdOSRhg1x7Bgrj3VAABPnSDKWNIBGjeDlBQC1a8sImnrhAt6+ZUlcXfH5M/z9Wf4eBYOZM+Hpid69YWuLXbtYofp1FCpYUxy3bt3atWsXp8TMmTNbyhkvUgsRZUZ68SKrSrXx41k2QjJ8ko48smABTyDT7Knk4sXRpQvPrLGjI4gAoFEjvHmjQHf//YcNGwDA1BTbt2t1cpaXLxEcDGNjtG8vV3k9PQwbhmHDBFZLh9bDGkGnpKRw0gYCKF68eEJCghpVUinNmgGY3PVlkSLg/A3QWWeV8+oV7t7lCkV5nkTkyADBQrQCpmjAxOw4cAEBmDZNsbpqICsLHz7gxw/MnYtmzeDsjA4d4OSEjAwVNB4UhEGD0LUrZs1CbKwKGtShnbDMsYmJiZeXFyc66J49e1rnzNKTrzhzr4YFyjfFS0DeyJk6VEjfvhg0iDlt3Jg/Nre9PYj44+TJybVrSEnR8JaNS5fw7Bnq1YODA/z8MG8ez0fuxAl0787v0SE/Dx8yI/Hr13H/Pi5dQtGieWpTh3bCMtALFy4cNGhQTEzMgAEDqlWr9uHDhwMHDqxevdpLNE2YDzl1ClXRpBleaFqRwsj48di6leVAtnAhtm/nKenrq4LuNJhVhAi//44jR8SnVlb8v0Mi7t7Nq4HeuZN1euMGbt+GhUWe2tShnbAMdK9evby8vGbPnj1z5kwABgYGHTt2vHTpkkW+ffMzM/ESTXsjP8c9y7fY2nKTNlWvjqQkeHnh4UPExKBSJfz7r2r6mjdPkzmxLl9mrDOkZPDJJu+5cSVj/EdF5bVNHdoJd8bZysrq3r17CQkJ8fHx1atXl5ySzl/Y2+PB4aaj4FERMTGoqGl1ChE9eqBXLx55yZIYPBiDBwNAaqoKDHTHjhg2DOPG5bWdvPDsmQKFR4/Oa3edOuHMGZZEzrVHHfkOfvtbpkyZfLw5JQfOztDzbgZPNEGIvrnpsmXYuROCJXIp1LRqhT59EBWFzEy0bo0xY5D7j3tmJjw9paZokRNTU/j4oFgx5VtQCfXqcSVlyiDnyrqjI1JTYWyM6dPBziykDK6uCAjA2bPi0y1bClTicx05yd8DZHkYtLgpPHF1w4sSU0wBmJsjLKyALxiWK4e4OHV3ammpmLuum5vCw+cqVRAdzZKsWaN56wzA3h5du8LHh5FkW+cuXeDiooJRc06KFYOXFx49QmQkfvsN1aursnEdWgXfrtICRp06MDIq8V4c005fH3PnalYhFSO5OBYXp4HkGjnd6WSSmanM5AbHOgM8rgtpaXj4EM+e8eSxTUrCjh2YPx8nTsjOcqsQhoY4fx6TJ3Plf/2FmzdVbJ2zad0adnY661zAKQQGWl8fjRuLInKIsLbGmDGaXPRXLbz76ER+NzITj6qQWrVw9izu3hXvOskd5RzrJY3R9OmYMIHZYfjkCayt8dtvaNEC1tasACBxcbCxwfjxWL4cTk4YNEguPeWneHFWjm0RvBFIdOiQn0JgoMGETALw/Tt69MDu3QVwf7AkapvoaNMG3bvDwQEdO6JXLyQlySgvueFQHtau5Upu3MD27WjQAF5e+PdfDBokzgwA4OZN1u6VLVuYSwBOnJDha6EEbdpwJZImW4cOhSgcBrppU3z8KNo7uGED64uqPVSuzLzu1k1zeihImTJwd2eFCbx8GStXsspERSEggOUKlpys2CSMqysSEuDsDB8ftGvHk1bV0RGzZiE0lCUUJcAVwbkE4KWqEzm0bMnarWpjgylTVNyFTE6dwh9/YMoUBAWpu2sdQlA4DHSzZiASDaJV/rVUFdWrIyICN28iKgrOzgpXr1VLAJ3koGFDmJhwhffuMa8XL0b16jAzQ/Xq+P13BAYiIwNublBo89P8+ShdGtHR6NoVQUE8k9HSyHaObtyYe6lJEwUUkJMVK/DkCTw8cPUqLl4UamdjRgZWrYKVFaysMG8eUlLE8gUL0L8/du/Gpk1o315l6d51aJDCYaA7d0aRIvD2BtCwIc91bUhIEByMY8fQujWqVkW/fgpX19R0p50dqlXjCrP/Ddy4gSVLGPnhwzA1hbU1N8GgTET7DzkB+2VibAwnJ5w9i23buM4e/frB2pq/1s+fmDcPFhbQ04Orq8KR8lu2xMiR6NaNP6yzSliyBHPmwNcXvr5YsQLDhwNAairc3VnF1q8XSgEd6kOgMKYCoXA86GwsLKh5cyL68oUVabdyZRo5UmqeaZUcv/+uWPnoaCKijx/pzz/JyorGj6cOHbhlBg2ikBDy96c5c6hvX8EDPedyTJ5MGRncFE0BAeKnvnixanoZOZI+faKWLeUqXLkylS3Lf8nZmcaMoVWr6NYtOneOPn/m+aT89ReriouLkp9VIdi/n6ytee5r9Wp6+5ZHrkMNCBoPOp+9h8ob6A0bCKCXL4no+3dau5amTqXDhykzk4jo0yeh7FfTpnTlimJV5szh6v7wIZmaiq+WK0edO5OnJ3N10iShlJfz6NWL/PxowQLq1o2cnen2bUa3jRtV08XKldS5s7yFlyxRoOW9e7lPW7JMaqoynziV4+GR241IZjzo3VvTGhcOdAaaQXkD/fEj6enRihXSrhsbC2W/+vThEZYpI7W8gwOPeklJ1LYtq9jRo+JLy5cLpblCx+nT/E897y3/+is1b65A+d9+U6z9devo339p+3by8aGMDJ4C2UlhNEu3brndxblzdOQISxIcrGmNCwfqThpbMKlZE+3b49Qpadd5A0eIqJi3GB6SiRCHDkWXLlLL8y5evXmD+/dZkgMHxC9GjGDJzc1Ro4aiOqqAvn3x+DFXWLMmnj6FkxP/foqwMBn7vEXTxM+fKxbs4sEDBQoDmDYNM2di/Hh07cqzGtGiBc6cUWBZUjhyDyRdqxacnfH2LbZvh6cnYmPRooW6NNMhGIXGQAPo1w/37/MkiwYAsINgs2jdmrXSlQvBwVi+nCuU3O22di0sLaU28tdfPELJnR3Za/c1auD9e0yeDFtbzJ6N06f5F0IVokMHZWp5egLAvXs4eJD5WWreHMeOISwMbduyCpubo25dlCmDvn2lNnj9ujJq5IV377iSp0/h4oKqVVmpvDRCLm4nDg4QZT2qVw/jxmHYMCU9zXVoHQKNzAVC+SkOInr3TvyHVgo3blDv3lSpEvfPo5MTZWTQ2rVkZUWWllSvHv9/zLlziYjev+fKhwwhZ2fm9ORJIqK0NBo0iKeRO3f4dUtM5JZctEjqjbq68rRctSrt3EkpKTxLjqo6XFxo2DDmdMwYllbfvlGvXuJLZmb05IlYvnmzUPqo9rC0VOTDJgDfv7MWY/fto/HjqW9fWrtWW2bJCwZfv9Lq1TR7Nnl5yVVeNwfNkCcDTUStWpGZWe5F0tOpUyfWN/PqVVaBmBgeG33oEFNg4kTWpZcviYjev6e7d+nHD1ZTr18zy19dutC5c7kpdvUq06azc27fycRE6t2bq+H8+eKrO3cKZcLGjuVKHBzowAHKyGB0Cw+n0FBGcvSo5i2v/MfPn9xHHR1N6em5vWsqJySE7t2jlBS1dlp44Ky1/vGH7Co6A82QVwO9ZAnp6/N7V+Xg61f680+ysCBbW/L25imwdy/rXTQ35351z5yhqVNp+XKKjJRLL5EziUx+/qSnT+Vt8+BBRsOBA5mv9P37QtkvS0t+eZ8+/Df48ydVqKB5syv/kZPr1xnXmvnzKStLrjdFh5YzYQL3TX/xQkYVnYFmyKuBfvGCAFq9Ou+arFsnfv/69aO3b/PeniCkptLjxxQRwRJmZFD37nmyU02aKFzlyhUe9bZu1bzNlf/Yvp3R/OtX7lUPD2HfSh3qQfKrweuelBOdF4fqaNoUZmbYti3vocymTgURiHDyJE+8di2hWDG0aoVffmEJixTB0aOYORPW1ujTB1euYNQoeRucPRsREbh/X+EoE69e8QgV8s3QLK1aoVMnrF+P2bNx8iQCA7kFLuiyqhUIJN14mjbVhB7/p+AH7OciWuT29YWVlaZV0Rjly+Off5jT7t3x4QOuXZNdcf58lCoFABs2YP16rFiB+fPl6vHjR/Trh7g4VKiARYvQogXS0/Hxo1Laa4InT1gBryU92AwN1amOgKSlYf9+PH0KY2OMHo0CkVhJAebMwZYtzOmkSTxRXNRJ4TPQTk746y/s2FGYDbQk8vyjqF6dFf1HTw/z5mHePCxaJDuXyt9/M69PnoSDA0JCeCLM5ReePuVKBg0CgO/fsXw5HjyAkREmTcrNuV47iYyErS2Cg8WnJ07gwgW1RhXXOL/8gthYHDqE6GiYmsLGRsP6FD4DXawYhg3D5s348gVVq2paG23B3JyVsYmXz5/x+DFPjGMlcjwqFMouX+DggMxMODvjyhWx5MIFeHujZ0+NqqUIfn6wsGBJAgOxYwdmz9aQQhqifHme5Di5IGg2+UI2By1iwgSkp2PfPk3roUW4uTFbdczMcPcuXr3iTl4D+PKFR/LmjeDqaTldukBPDy9eMNZZxI4dGlJIKRYs4BG+fq12PfIbxl+/Ctd4oTTQDRrA0hI7d6o4M11+pmhReHggIQEfP+LWLbRvj4YNuZvIwZcipGxZ/ga3bcPChXBxUcG2Ru3H1RUAvn3jyhMT1a+LkqSkwM+PR968udpVyW90EHKEUigNNIBx4/DunVzrYoWJ0qVRsyZz6ubGmkX19OSZEypeHGPHsiTz5iE9HePHY8kS7N+vFbG2haNFC9y/L47fLZm4gLO7XZvhzS1gZcV9c3VwefmyVmyscM0XVgPdty+qVMlnf0HVTsmSuHgRDx/i0iVER2PYMP5iGzdi5UpYWcHGBnv2YNkyGORY2pgxQz3KaoanT5kwKeXL4/hx5lLv3vyTBuohKwsREUhLU6AKJ8D/yJG4fBklSwubrhcAACAASURBVKpWrwLHwYOCNl/4FglFFC2KUaOwejVevy4Uf8LzQOvWMgoUK4Y5czBnDv9VS0vcv4/Vq/HffypXTSsIDmYcggYMQFwcHj9GxYqanBw4c4YJQbV0qby/E66uqF8fJ09CTw8DB+an5U2NQYQjR5KLFSstWA+FdQQNYOpUFC+ORYs0rUfB57ffMG4cXFzQsaOmVREAY2PWadmysLDQpHV+/54VIHDhwlyC7HKxs8PevfDw0Fln+fD3R1jY/bp1hetBTSPoS5cuXblyJSIiIiMjo0KFCm3btnV2di6v2ZCIVavC1RUrV2LWLJ7pQx2q49gxsZtwwaN7d006O79/jy1b8PkzOnTA2LHivIs3b3KLXbyoTJZLHbLZsgXlyj2qW1e4LRXqGEEPHjx49uzZZcqU6dmzp6OjY/PmzX19fZs1a/b8+XM19J4bM2eiXDndIFpoRClfCx5Vq6J8eaxYgWnTsH07E6FbPbx+DWNjrF6NQ4cwZQoGDBA7JRUvzi0pKZFJUlLeoyEUdD5/xunTGDPmp4GQw1yBYnxk8/bt24YNG6ZKBMfcuHHjGE7AYDnIa7AkSVasIIACA1XZZmEiMpLOnKGAgNwC8mk8zpF6jgYNaMwYWr1aRoqsixfJxoYsLGjkSPLxEecIVgLJXJSiXL3R0Vy5n58Czd65Q126iCsuWaKkboWCxYtJT49evcrfwZISExOrVq1ajJP1HmjcuPH379+F7l02U6eiZk2pK1w6csXDAzVrwtERpqbo2VOq26+dnXrV0hBv3mD3bsyYAVtbngw4Iq5fh60tLl/GzZvYuxddu6JKFUycqIxH/ocPXEl4OABUrowHD2BrCwCWljh+HObm8rYZH4+OHRmH6EWLdNu5pJCRgV27YGsrtIuB4Aa6adOmkZGRs2fPfvbsWUJCQnJy8qdPn7y8vCZPntynTx+he5dNiRKYPRt+frh6VdOq5DOiozF6NHN69Src3flL5gzEURjw95dq1/bu5RFu24bduxXuRXLdJFvSpg0uXAARbtzAgAEKtHn3Lldy9qzCihUKTp1CZCQmTRK6H8ENdNGiRW/evBkTE9OrV69y5coZGRk1btx4zZo1ixcvdnFxEbp3uRg3DvXqYe5c3aybQkimiJVMjyvi118RH4/jxwtRGlNXV8yfz5PmNS6Ov7zMQCiSzJjBCp0xd64KAmPqS9gDSYkOANiyBfXrqyGWkjq8OGrVqrV7924ARJSZmWkg6Jy6EhQtigULMHIky31UhyyqVeNKckl/XqYM+vXDhAmCaqRdLF+OYsW4PshduuD8eZ7C0nbMZxMZiSNH8OMHunWDmRkAlCmDq1dx8SI+fULHjrLd1XlJT8f27bhxAxUqYPx4nmTBOvcPHp4/x61bWL1aHT9fAs1tc/D29p42bdqAAQMcHR1HjRq1devW2NhYJdpR/SKhiIwMatqUfv2VlT5PR65kZnIzH/r751Y+NFTz63gCHS1aUIsWPHLJPLNpaawMwnI+ukePWIVXrMjre5fN4MGslm/epIcPqUcP8emaNSrrqEAxZgyVLEkxMaKz/L1ICG12s8umSBEsXYrnz5UJnVlY0dfHf/9h8WJ0747Bg3H7NkxNcytfgCNTicLby4OhIY4cQVgYTpwQzw736IGLF2U8Oo4j6Ny5UhchFSI8HEeOsCRr16J1a1y+jPR0EOGvv1TQS0HjyxccPIiRI1Ghghp6E3y24d27dw8ePHj69CnHkWPTpk3r16/ftWuX0ArIS//+aN8eCxdi0CAULappbfIHpUop4ETeqBHMzXHrlpAKaQ7enF6Swf9E1K2LunXRv7+8jUuu1L1+LbVx+ZHMaBMfL36hbdOQWsS6dUhPx7Rp6umt0LvZZaOnhyVL8P499uzRtCoFE3197NyJ+vU1rYcwGBlxJXXqYNky1TQu6e7UoIEKmv31V65EF5ZGBgkJ2LEDTk5q+xwXeje7nPTsiS5d4O6O5GRNq1IwadIEW7dqoF8HB8G7kAz116SJOIZneDimToWjI5YuZYaoCrFkCevU3V32oqI8lCvHGo2YmUl1lNQhZs0axMVh5kz19SjQ3HZOPnz4MHr06F9++UVPTw9AqVKlzM3NDx06pERTQi0SZuPvTwCtWiVgF4WP9HTy8KApU2jdOoqPp5o11b2IV7SogI3/8gs9e0YREVz5ggVERB8+sIQWFiSxqVYuIiJo1SqaO5du3lTtm0NhYXTwIF28SGlpKm65oPHkCRUtSkOHcsSCLhLqkRqdf0kRN7uTJ09ulwji8OrVqwYNGvgo4TUqP7174/ZtvH0LzcZyKihkZsLBARcuiE87dODZDZGvqVABoojtpqYICBALe/bEiRMwMsLChdyJDi8vnikLST58wNq1CAuDiQmmTtV9GDVNRgY6dcLHj3j+nLM8OGbMGDc3t/rCTHpobzS7/v3795dYRpk2bdrnz5+F1BRYuRKtW2P9eu4fSx1KceUKY53Bt1ctv5OdTyMgAI6OGDECVauiQwfo6QF8C3GSW7QliYxEnTri12fPwtcX3t662PkaZdUq3L+PkyfV47yRjc7NToKWLeHkhLVrER2taVUKApIJ25QIrpZfOHMGPXuiY0exdQafI4c8ebA4O8L9/Pi3t+hQEyEhcHeHs7P69+3o3Oz4WLYMJ09i1SqsWaNpVfI9zZpxJampmtBDXfTujT59MGECDA0BYOxYXL6Mc+fEV6dPlytrgeS4W1KiQ01kZmL4cJQqhQ0b1N+5zs2Oj4YNMXw4tm5FRISmVcn3WFuzovVbWCgQXC0/4uMDV1cmIbqhIby84OuLffvw5AlWr5arEclRdrYkJgbe3vD35wn0oUMQ1qzBvXvYuhVVqmigd4EWH7P5+fOnsbHxrFmznj59Gh8fn5SUFBkZeebMmYYNG+7fv1/R1gT34sgmPJyKFaOxY9XRV0EnK4vOnqXFi8nTk37+pK1b1e3FoZEjPFz5J5aeTn37Mk25uorl584xwi5dKCpKJe+PDumEhFCJEuTgkEuR/L3VOx9Es+Oldm2MHw8PD7x+rWlV8j16eoiKws2b2LMH06Zh4EAcPQp7e1hb80RcKjDMmIGoKCXrGhjg1CncuoX9+/H4sTjfdno67O2ZMn5+mDVLBXrqkEpWFkaNQsmS2LFDUyrootlJZ+5ceHhg1Cj4+Og2f+eFPXswdqz49c2bCAvDxYsYOBBhYahXT6OaCcnx4/j8GZcu8WwylMm7d/DzQ5kyGDCAcd4IDeUWk8chRIfybNiAwEAcOoSqVTWlglqjverp6WVb57CwsLVr16qzd4WpUgX79yMgAOPGaVqV/M3Ro6xTb2+8fw8AYWGa0EYwJL1T/P1x6ZLC7ezbh/r1MXIk+vdHt26MFZa0EqJ1SB2CEBaGBQtgZ4chQzSohcbCcX/58uWs9mdr6NsXbm7Yt6/A5j1VC+npXIlox7Okg0d+pGpVODri4EHExfEEcFd0liMpCSNHMqe3b8PNTfy6cmUMHcoqrBs5CEVWFkaMgIGBxr/4gs82vH79egOfe8qXL1+E7lo1LFuG4GBMmYKmTVkZLHTIjYkJfH1ZEpFprlYNf/+d7/NB+vgwUYcGDMDly6yrnTop1lpICFfy6RPzetcutGgBLy98/ozq1REejtTUguxXrjG2bIGfH/bvR82amlVE8BG0vr7+vn37ypYtW41NxVzSb2gV+vo4fBgNG6J//4L2n1xdLFvGhCsyNYW/P/PffPZsPHqE+fM1+z9SecaOxcyZ6NULO3YgMxMjR7JuZNkytGmjWIO1a3Mlycn4918cO4aEBAQHw9gYgYEIC0NgIKZPx6BBukxtqub9e8ydC1tbaIMXg0DeITnZvHnzsGHDOMLbt29bWFgo2pT63Ow4hIZSuXJkYkJJSRrovUAQHk7PnvFE5Jk1S/MucSo53NzEdxQcTGfP0vv3uT2N+HhydycbG3JyomvXWJfGjlWs30ePVPcm6cjKou7dqUwZ+vBBzhqCutmpKeXVmTNn4uPjc0rCwsLWr1+vaDsaM9BEdOkSFSlCv/+umd4LKL6+mjesKjwyM2Xfcnw8N9EUQGfPMgUyM8nDgwYPJkdHuTo9c0a496fwsW0bAbR7t/w18rcftAgHB4cyZcrklNStW9fV1VU9vasGGxssW4ZDh+TdDaZDgrQ0nDyJrVvx6JFYotq4hEo4tKmWpCTZZaZP5yaaArB1K4KCsG4dDh5EaiqGD8fKleJw0jKZMQMnTiisqg4ePnzArFmwtsaoUZpWRUw+cUnWEubMQXAwZs9Gs2awtdW0NvmM79/h4MCkvFq4EEuW4MoVVXYhj30UDktLlC4tu9ju3TzCkBC0by9+vWwZfwItabx5AycneHujZ08FaungQoRx45CVhV27mGBXmkZjbnb5Ej09eHigdWsMHSqK0hYdXZBzoaqWlStZCQmXLkVoqMaij7Zoofo2Z83Cq1dKhsgQOYaLUMg6Z7N+PbZtw4kTBTwWlYDs2YNLl7BmjVbtntIZaAUpUQInTqBIkQRrxzJ6iVWrokgRzaRxync8fcqVPHumCT2AChVUk9NPxLBh8PJCr16wtUXjxrC0xP37PMXS0rBpEwYNgkDuS5cvY+JEODmha1ddoFzFCQ/HjBmwsmL2vGoHOgOtOHXrRqw5VjIi1BMueiAAkybhxg0ZlYhw6BB690avXti8uTCGIpN0IDM2xujRGtAkNhanT6ustZQUeHvD21t8Kgrbb2kJPT1MmyaedSHCkCGYMgXHjiEmRmVd8xIYiKVLhe2ioJGUBEdH6Olh927tmdwQoTPQynA20eovrHXEmUUQZ13JmTSEl40bMXQoLl7EpUv480+1pp3UEv76i3Xarx9at8a6dUy61fziGc+hShXu7pLISNy8CQDr12PKFAB49AgnT6pPpaNHoacnPrp0wb596us6/0GE0aMRHIyDB7VqckOEzkArg6EhNuHP3RizEEudcBxyREXgDNnWr+fZAF2wadwYYWGYNQvDhmHHDvz3H+LjsXIlE61C6KFlHpEWxnr0aOSShc3DAxkZ6nb8+faNeX3rFkaOZAb4Ori4u+PoUfzzD3r31rQqfAjkvicQmvSDzsH79wSQIdL8YJ6IUs3x9N49GVUk3Ve/fFGLrtpKQgKZmWnec1nO4/x5GjCAK+zcmfz9KSNDRt3Bg6l4cQ3r37Wrpt9v7eTMGdLXl0zUrRAFwQ+6gFGnDnx9YW5tOBDHUouVvVvFvp3xt9yrcBI5m5pqJj+D9nDkCPz9Na2E3OzeDYkMxrh8GaamrFgZvBw5onnPCh8f2XoWOl6+hIsLTEw0GO5ZJjoDrSQWFvDxwWeqVsn3RMn4zxg8OPeFv9WrYWrKnP77r+AaajPx8dr8peDhzBk4O4sD5wOwscGTJyhVCgBq1NCgXgowfToSEzWthPYQG4s+fVCyJLy8tDlfus5A55mOHbFzJ65dY+JC8tGwIXx84OuLq1eRmKhwkLP8RUYGcglWGBcHW1s8fKhGhfJMt24A4OoKImRl4dIltGwpvlSkiMZjUsrFf//B3l7zY3mtICMDTk74+BFnzuCXXzStTW7oDLQqcHHBn39i9Wrs3ZtLqWLFYGGBbt3EI6+CytKlMDREtWowNeXfKLhnDwIDeeRakkx2/HgeYU4XFElHrHHjcO+egCqpips34eWlaSW0galTcf06Nm9Ghw6aVkUGOgOtItauhZUVJk5EUJCmVdEkR45g0SLx68BA2NjweDi8fctfd/duJrCyRjh4EETYtg3BwRgyBM2aoXFjuLjg3j306iWjbrt2sLRUh5J5ZNkyJhAKh6goufbKr10rduCzt+eJXp2aiq1bMWUKNm1CcnJetRWEffuwZQtmzNCME76C6GJxqAgDA5w4gXbt4OhI94IiqUa5cgV8pMyLpDvXrVsYOJAlad6cp+LevQgIwPPnQikmD9mKtWiBQ4dYl/z8cOcOqlVjJQnMzMSmTfDygp4eOnfGwIHcvARayPPnaNMGHz6gVi1G+OQJ/vxTvBG/Vy80bgxDQwwYwIQHycbTE9Oni1+fP4+4OFy5wgR1+vkTdnZMAKwTJ3DxouYjWLEIDMT48ejeHX//rWlV5EMg7xCB0BI3O6k8epRR3OhxGXNDpAH0xx+Unq5pldTLqFFcB6/Tp7llUlKoWzemQKdOFB5ORGRhoUlHtO7dKSOD/6amT2e51kVHi+Xu7qwWmjWjPn007E4n57FwIXN3GRnUuTN/sSNHuI9C8gb9/ZmrBw9yr27dmocPk8p59YqqVKFGjej7dxW2qnOzyzckNzIZkurRMsF/I6YA2LULhobo1w/h4ZrWTF1wBssAT5qw4sVx7hyOH8fKldi0CbVrY8QITJgg3n2nfmrUQNu2aNiQX4GQEKxZw5wGBjJjr6tXWSVfvID2Z9kUsXQpLCxw+TLS0hAayr8kAGDLFq5E0lMpLY15LTl59fp1XtRUKQ8ewMwMALy8UK6cprWRG4EMv0Bo+Qg6IIAAWgE3AiZhc/Y4wtJSrlDuBYO9e8ncnADq1YsePuReXbVK/Ex69KDTpzU8kGzXjubPZ0nWrOEqfPIkt5aNDSUnE/FtPsp3h5kZBQbmVoDzF3DjRm6BxETm6okT3Kt79qj886UUPj5UujQZG9OrVypvuyBkVFEVWm6gHz4kgPSReQYOGSjSHyeyP6mhoZpWTgvw9NS8Sco+li2jZ8/IxESGSXr8WKpp69JF83eR92PoUOraVepVFxfWltfMTPrrL/GlLl3o9m3Ws8rIIHt7pq6NDf38qY7PlQyOH6dixahlS/r0SYjmdQaaQcsNdFqa+EtbAsl+MP+Jot1xRfRhffZM08ppAf36ad4emZvTwoX0/j3P1m3RIZoQz4lkhqrso1Ytzd9RHo927ejjx9zu0daW+0DS0piJeA6ZmXTqFC1dSseOaccCjIcHGRhQx4707ZtAPegMNIOWG2giCgujgQMJoPKIfYZf41DWBI9MTaUuQBUesrKofXsNG6Nly8TKrF0rtYzkZFRmJh04QBMnUseO3MIav6O8H40asW72zRtq0IBbJr/GjVm8mADq00c8JyUMukXC/ETdujh6FD9/YuC48j1xKR5lbxlYHRx9o0gRTWuWN6KiWMtBSjB+PM9ujjp18tSmohgY4MgR/Pef1Pjdnp7Ql/hO6Otj6FBs2YJixXgu5Xc6dxa/2LEDlpZo0AA/fnDLSEq0nawsTJqExYsxahROnpQ3vaMWIpDhFwjtH0Hn5OdPin8ZSSYmVLQoHTigaXWUxM+PTE3FI6m//lJgtfPiRVq8mHbvpqQkevuWOyirVo3mzNH8+JFz5E6rVtzybm6a11mhY/NmruT5cyIiD4/capmb08ePefoUqZWfP8nZmQCaMoWysoTuTTfFwZC/DLSYhATq2ZP09GjRIk2rojBxcTzfcHkYOZKp0rkzz/p+7do0fLjmDVbOY+JEGTclWSUoSPNqK3S8fk3HjjGnZ8+Kb83GRkbFfPO1+/GDbGxIT4/++Uc9HeqmOPI5pUvDywu//44lSzB6dP7KdiW5cV2e0O9BQayoJIGBPC7GHz5ofn7A1haVK4tfjxmDf/6RUd7BgXVqZoa2bZmEA/kCPT04OYEIP3+CCPb2YrnM9BFHjwqtmiqIjUW3bvDxwe7dBSNrkW6rt1ooWhSenqhfH0uW4ONHnDiB0qU1rZNcSM66Fi0qu9bLl1xJRARPsW8yYmgLjihRWXo69PUhzyLBmjX49g0BAeJTUczYJ08E008A3rxB/fqAxPvYsSOuX8+topWVgFqphvBw2NggIgJeXrC11bQ2qkHTY5jCg54eFi/Gnj24fh1du+YWjlObaNtWvP0qm0GDxC+yshAejrg4nlqSObMbNeKmLADftjR1snmz+IWhoVTrfO0aevWCpSXGjMGnT6hfH9evw88P167hxw907AgA//2nJoVVwrJl/PIFC+DsLH5taipOlJWTwYOFVSyvvHgBMzNER+PKlQJjnQHo5qDVzuXL4k1NISGaVkUuXr4kBwfxROSWLWJhYCATwMHFhVJTWVWyssjJiTWD+fkzPX/Okhw/TrNna2YetlMnunBB9o3fusWq1aULpaRwy2RlaX5aWdEjLU3qLUdHU2io2CU0NZUWL6aGDalmTXJ2prg4BT4z6ubOHapYkapXpydP1N+5bpGQoSAYaCK6d4+qVqUKFcjPT9OqKENKCvc7nzP4jojMTDp8mFxdafVqio0VC+Pi6MgR2r1bvBkkNpbxD1HnYWEh122OHs2teO0aTzHNxnhS4pDTr+HHD1bSSDMzSkiQq6K6OXeOSpakJk14thipBd0iYYGjXTvcvo0qVdC9ez5ZfGHx9ClXIpmoQF8fgwdj/XpMn47y5cXCsmXh7IzRo1G7NgCULw8fHwwbJrC6EsgZlen7d64kNpanWL5bi5Jzdu3oUVbSSH9/HDwokEZ54MAB9OuHX3+Fn5/4U1Ww0BloDWFsjIAAtG+PwYNlew9oGZcvcyUREeIFN0UpVgyenti/X5m6FSooUwtA795yFZOMw8ebqKxaNfTtq6QmGuHOHX55Sgr+/hv29vjjDwQH4/17boHz57UsBv+GDRgxAubm8PFh3HEKGAKNzAWigExxZJOaSoMGEUBTpuSXeHf37vH/cXZzU77NqCi1/sd/8UIurdLTaehQppbkTqN796hXL81PWSh6+Pry3GxmJvXuzSr27788dTt31o5t31lZNGsWATRkiMYDMummOAouxYrh8GFMmYKNG+HsjJQUTSskG940gwCqVFG+zapVuS7GQnDmDLy9kZSEpk3lKm9ggAMH8P49AgIQH4+hQ8XyzEy8eoUNG9C+vVxe4VpFly5i5xMOjx9z/wM9fYoBA7jFAgNRtSosLeHpKZSGssnIwIgR+OcfTJmCAwfkcvzMt+j8oDWNvj42bECdOpg5U+zCmRdTJzySntEiJEP1K8S+fVi4EMHB0NeHgwNOnGBNgCpK9eo8uRBtbFC8uGLtJCZi0yYEBaFIEVhaird1uLqKs0PlLypXhp0dli3jfwcjI7mSz59x+TKWLsXixdxLN2/i5k2ULauOn1UuyckYOBAXL8LdHfPmqb17tSPQyFwgCtoUR05OnyYjIzI21vLIpCEh3L+9Dg6qj3b95g21aJGnf/GcGMfW1sqoIZp/KhhH7h5oHz5wy4vmrO7ckdqgk5MyjzRPhIVRx45UpAjt3Kn2vqWim+IoHDg64uZNpKbC1JSbTEmbaNwYV6/C2hoArK1x5QrOnEGjRgCQlQUvL6xfj2vX8tpL/fp4+BBTpohPraxw7hwmTeL/ey7Jt29YtYolUWIhNjExP7rY8FCtGg4dQsuW4lNvb/TsCSsrjBrFDJxr1cL69UwVMzPMng0ANWtKbVbdE3IHDsDEBC9f4sQJ/PGHevvWHAIZfoEoyCNoER8+UMuWZGhI//yT244C7ePnT9aK2ZAhqokjlp7O3SLx9SsdO0YzZ+Y2WhR5xCYk0IULdOGCkg68kZGaH/aq8BDFDvL1ZQnNzVm7b96+pREjmKuHDxORVF/1DRuUfE8VJjZW/F/G3JzCwtTVq7zoNqowFHwDTUQJCdS3LwHUpAl5e2taG3nZsYP7BZZnt57SiNI/8h7duinZ5r17NG4cDR1Knp48YTkLwOHqyrK/ouP6deYJcMw3QM+ekb8/T1MTJqjL7ejKFfrlFzI0pBUrtDPthW6Ko5BRujROncKFC8jKQq9esLfXSG7kXbugpwc9PfTogfv3ZZeX3L0SHCyEXmLat0fXrvyX9PSUafDyZbRvjx07cPAgXFwweXJetNNSNmzAu3dc4b59TCoGSaeUK1fQvj1PU2/f4vBhVevHISkJkybBxgalS+P2bbi5yRXRqmChM9Daiq0tnj7Fv//Czw/Nm2POHCQmqq3z8+cxdqz49dWraNeOfxNdToyNuZJ69VinkZHYuhXr1yM0VAUa/q+9846L6tji+FlAmooNFdSnCEYMFhCwIEaKBUVUQhKDBoy9JHZ9EoyIsT0EC2JBDKJojBE1KkZjR9QEEwVsKBYERIp0pbMs5/2x65a7u7Asi+zC+X7m4+fumblzZ/Zyf87OnTlHQwNOngRvbxgyhJkl34ay7dvr3ygVQNyt4OHDsHIl71h8gQeLBW/fCvwo8bl8GTw9ISSkAZrI5fp1sLCAfftg2TKIiwMrqwa7knLTQCPzBqJZTHEwyMzEGTNQTQ0NDTE8vIEiRJSV4c6dOH06rluH2dkSfgifPl1LDQUFaGMjKO/gIOJBiTEj8dtvCmt5dTUz/OvTp/LU0+jzDx8tcWNmMhKbjS9eoKur5FOsrSVH/nZwUNh9FPD2LXp4IIuFn3yC0dENcAEFQ3PQApqjQHP5919eyNIhQ/CffxRbd2Uljhol8uCJR7w+caL2evLzcdMmnD4dAwOxpEQki1E/yOyyRxbYbAwJQU9PXLUKX72SsxJpQb6bXlqwQILxyZPaT7x3T4JRkXA4uG8ftmuHWlq4dq0E54FKCQm0gOYr0IhYXY3h4WhoiCwWenhgWpqiKj53jvnUMZyFQr3jOos/2BkZCmq9ghCPmshPRkY4dy5aWja+tioq8f3HcpO9PW7bVvtZZ88yLVOmKO4G3L2LgwYhADo6qoonXi70kpAAAAAWC6ZNg5cvYe1aOHUKTE0VNTEt7hZHVxc2beIdDx8O16/Xd3ujvT3T0rlzvSpUOMbGUFwMJ04IJt/5DBwIISHy+2ZSQqZPF8RhsLWF7dshO7v2s3R04OZNwUc7O9i6VRGtKSyEJUtg6FB48wbCw+HqVTA1VUS9TQESaFVDVxfWrYPnz+GLL8DfH/r0gf37obq6PlXytzDwMTeH1auBw4H8fLh1S2q4ozdvICwMjh6FvDwJuZWVEB8PT55AdTUsXy6StXNn4wckFKdlS/jyS1ixgmnn7o4ZN+7jt6ihSE2F69fheh+AEgAAIABJREFU33/h77/h6lUYOFCyoz5hhg+HYcPgs8+guBhu3oR79+DaNejSpX7tQITDh8HUFPbuhe+/h8REmDZNzlU4TZUGGpk3EM16ikOcf//lxTWxsqqn739h5/SjRmFpae2nnD8v8mv37l18/Ro9PdHeHkeNwu3bBRscHBwwPR3j4nDVKly2DKOi6tPSj8GWLYJ+ubjw3nZyOLhmTePPTigkhYcLOhsfj+HhePMm2ttLLe/qKuer15p48ID3J/LZZ/jwoaJr/3jQHLQAEmgm1dUYEYE9evC0RO53ZIg3buCOHXjmjKy7ARjP8KhRNXnPmDwZEfHtW4yJwbw8rKrC588xPV3uxjY4SUl44gTGxEh4mVlVhXFxqhdIRTgFBiIiVlTgkiVSy4wejU+eYEFBA3y5xcXo5YUaGti+PQYGqoqjXWmovEDn5uZ6eXkNHDhQX1+/bdu2xsbGkydPjpZrAQ0JtGRKStDPD1u3Rk1NXLwY371r6Avm5NRZFISHn0ZGvIMJEzA5Gf/+G9+8QUR88QIDAjAgAJ8/b+geyE9xsdTdzz16SNhR2VipVSupWW5uNY2X+enhwwbYWR0Zif/5D6qpoacn5uYquvZGQLUFms1m9+3bd968eVFRUS9fvkxJSYmLi9u7d6+hoWFkZGRdayOBrok3b3DuXN6K6ZAQxe6LjYnBY8cEru45nLqJhRyu6cLC8PZtxTzCRUUKqIRPcLDUNsfHIyJOmNDg4rttGy5dWlOBlStxxgzFXGvCBAVFI3z2DMeMQQC0ssI7dxRRo1Kg2gL98OHDoUOHitvPnj0rh9SSQNfO3bu8YJ+WlgpZ589m4xdfCB7XVat4dj+/OjzksozXpCUzM9y6FZOTcf9+DAnB588xORkPHMCAgNofc/7qseHDRZxOpKfjtWvyTAiJe6sQTgkJiIjPnzdgMFx9fRwxAi9dqskbCTcAeXKy5FxT0zpfdOHCOn9RIpSUoK8vamlhu3YYGKicLjXkRrUF+vnz52ZmZlVityQ8PHzatGl1rY0EWlYiI7FnTwRAFxdMSqpPTfv3Mx/Xv//mZZ05gzNn4rx5+O23kh/snj3RwQF378b//a+hBGvdOqktP32aWTgzExFxwwaBZcEC5ixzTg4ePoyhocyF5tXVeOQIdulSU2Oio3m1VVTgrVu8qEyKStwXDfy0bBlv3bB44rvnzsvDtWvxk094dhsb3LMHf/5Z6iVOnMD//hfnzWPaLS1l/WspLMT583lneXlheTliZCT26IEsFnp6Yna2rBWpDqot0NXV1U5OTjY2Nrt27Tp79uz58+ePHj26dOnS9u3b3759u661kUDXgdJS9PNDPT3exDTDa6fMzJnDfFy5r5iESUuT/MAfP84r8OpVQwk0AG/+Whzx3/jHjknwQC+87/zuXZGsc+cEWT4+MjXGxgZHj+YdC//ykD199RUuWoRz5sg6DBefa5b4YrPmm9WypUDWxZ33A2BQkEx/Le7uglN6wYunPcchAFpYCP5Xb3KotkAjIpvNPnLkiIeHh729va2trYuLi4+PT5JcwzoS6DqTno5z56K6OnboIN+vS19f5rMqcdt3aiouWoT6+oJiTk4iHq3v3eO5eqh5ECpH8vNDRMzKwmnTeJYlS7C0VGTtIDcdPy5hy9z33wsayZ0jFU5cqqqkXl18nF6fFBMjaExxMVpby1PJ2rW17KS/fBn19JhnLVokKMB1K8BItfonLyvjldSB0nXgWwbaBdC26c1pMFB5gVYgJNBywp+YtrDAy5frdGpqqshT+tlnIn42njxBf3/csQNTUhARS0tx3z5ctgwPHsTUVDx/nhdpicMRBF9mTJ52747m5oKP/ftLENaak4MDTp3KNC5cyFypDYBv3+Lhw0yj8CSJeOW3buHjx/j2reRLHzwoYaN8fZKPj6Axa9fKX8+sWbXc1lu3JJzFR+I7gxcvaqnz3TsEwIlwNhmMqoF1CL7tBG8bxruXEqHyAk3L7JSC6mo8fpy3wK1fPwwOln1xQ1ISfvcdjhuHP/wgsqzit99EHuBr1wRZgYECO3cyHAAnTuTFOomORjc3dHHB+fPR1xdDQ7GgAJ88wdxcjIyssxhJG5Kj0IoLR0f86y9ExPx8ZjHhh0va6ubPPpNgHDYMESW7EJI7zZwpaAx/qkS+VHNsy8LCmgRaYoW1R/iJirrf3gEBHkL/4XALAL/5prZTVB/VFmhaZqdclJdjWBhaWSEAtmmDS5bIt+SYw5HgXYjvfPLZM6mqMWoU/vij5KwtW3jtUlTij90YyvLqFc6YgXZ26O7ODKX6669SaxNfKcgN3cLh4ODBCmvzvn2Cxog7/4yKwsuX8e5dXsidmtOpU7XcRGdnkfLz5wuynJyYtdUS4OrSJe5PNHbnrrtMd2kAGwAnTMCcnFra0ARQbYGWe5ndxYsX54rRv3//MWPGNFhjmxP37uHcuaijgywWjhqFERGyTxQmJOCIETVp4i+/KFJn5UvOznJ+MdHROG+e5EXE3H31/BQczDtFjlegnTtLMH7xBbLZgpYwfkyMHCnI5XDw5Elcuxa9vaVegr9oXRppaYIl256eIj+oGNNQXl7Sa7lyhTdj3b07BgZyvQRkZjaNPSgyodoCLfcyu/fv3yeJsWPHjq1btzZke5sZWVm4YQN27YoAaGyMAQGYl1frSdIWNfPfO0mcEPjI6dNPeTFP5Ua8ztev0cMDAXDECNy+XTBC53DQwkKk5L17GBTE3LHSvz/a2+P8+fjzz1hWhqtXC7IsLCSvWT91CkePRgcHnD9fqsfX169x507mhLXwm8+aKSuTPHeRmooBAbhxI967J+m0igoMD+d128QEQ0NVK8axAlFtgVbsMrvjx4/v2bOnIdrZrGGzMSKCN/+qq4uzZ/O2xElC2usyRtLRaXyNBtGIqHXlhx9EqhJe5MDg0CHmdW/d4mVlZeGBA7h/P75+LeHEp0/xyBGMjsaLF3khS5ydpQiiDBQW4p496OODly7JWUNBAe7fj2PH4ujROHUq739i7mDf3v5DtdnZuH49GhggAPbti+HhIsP+5odqCzQqdJkdCXTDkpiIixdjy5YIgFZWGB4uPiwqKmp82ZU9LVgg/5dRWYl+fujggA4OuH69SAQvLrm56O2NY8Zgu3bM6wYE1OFC8fHM0z++G6msLBw/vpYvszc8y/dcjLq6vGmxyMgGCsCmWqi8QCsQEuiPwbt3GBKCZmYIgAYG6OXFGP5JDGonnmoYRA8YgABoYYHr1+PChfi//2FWFi5apHiBFl4UoViKingLFyWmo0frUJX4W9PQ0IZqtjRqiPilBpxRcOUcuFQDi62hjZ6etSwQaWaotkCnpaWd/hBw9NmzZ66urj169Bg0aNDBgwflqI0E+uPB4eCVK/jVV6iuji1a4Fdf4ZUr3JzCQly4EAHQ1hZNTFBLq26iOXasyEfh2FdlZbh3ryIFutaVDHJz5IjUiw4fLqt3Ie7a8GXLmDXUsmRCUmMcHBAAp02rKRRaaSn6+KC9PTo44J49AjefbLbkjrSCorkQkgBmCJABhuvAd/uPzebdn8yotkBHRUU5OTkhIpvNNjY2XrFixZ07dyIiIkxMTE7IEohUFBLoRuDlS/Tywg4dEAAHDsSQECwu5ubIEsiu1tSuHY4bhwcOYFwcVlTgzJly1sMd8Qsne3ssLsZTp/Do0ZpkSz53xDX4isrKqv30gABe4VGjMCiIWcOJE+jmhnZ2+M03tS+DPHVK5Fw7O6mv6xjB2rds4dnFfRMaQsY68M2D9ghwD6ymQXgLqATAuLi6fEfNgyYi0E+ePBkwYADffu7cOXd397rWRgLdaJSVYXg4b89fmza4eDG+elUfH3USk6am/Of6+zN3djDWikVEMPvE300zZkydpefqVcnNkGXW++hR5lnCazD42s1PNbsYEl8uLTHse2kps5idnSCXv3vTCu4dBk82aHBA7Ry42MJtfvkjR+r2FTUTmkjQ2A4dOmhoaAhb2Gz2R7s6UV+0tWHaNLh/H6KjwckJgoOhV6/lNyY6wSUWoHDBjh15QfzkoLJS/gYuXw5nz8K2bfDNN7B6NWRkwLZtIgUmT4bQUOBweB8jImDpUt7x5ctgaQnv3tXhciNHwnffMY1Tp4K/f+3nnjnDtNjYQGkpPH8OlZVQUcHMjYysqbayMqZFYiRhcWN0tOB4p0/uMbt9/8Lge2D9ueb51K9Wlj9Ltc48F/zQtqwMsrKguho8PGpqBtEgNJDw84mKiurUqZO7u/u8efMMDQ0vXbqEiHfu3OnVq5cc09A0glYW0tPRx6dA2wABnkHvpbCjHeQDoK0tJiVherqCR9a1pv/8BwMCmIsfJJZ0dORNEH/9NTPrwoU6fw3x8Xj4MP79NxYUyBTIkYv4GznhS4tPSXO9QUlj82ZmeWmOCxnbi77+GjEzE0NC0MkJNTQQAPv2xeBgEWcrRG2o9hRHQUHBuXPnjhw5snv37o0bN8bGxiJiRETEPuE9rTJDAq1UpCdXbPj06F8wDAHKWdrPhnhWXuPFrmW8CfxoSXimgruyWDytXo0oSSXPncOcHFy6FB0c0M0N675MXwKlpfjHHxgWhsHBGBbGc0Ui/oJRWFJ//52ZW7OrzspK9PQUFOYvgo6Px+nT8bPPsF8/HD4c3d3x5EmeC9Ne8GKfiX+F9TBUU0MA7NULvb3x/n0FdLj5odoCrVhIoJUNDgfj4/HB8afsFR9eJJqaop9f9pMcWfxFKDy5uAjaJq503OTkhIgS3NqJp3oGZkpJYe4Ohw/OWjdt4n10cJBwFeFwVps3S6j51Cl0ckI7O1yxghfXNTsbExLw5EmcMgWnTMGtWyV0py88LlzqW/LpB48nZmbo6yv/xhgCEUmghSGBVmpKS/HQIZ4maWvnjftmBETLIbIdO9Zehh92VjzxefJEcoEZM7CyEtevF1TSu7fUkvVB2oJxvuODD8thJJCWhtHRkheEnDwpUpuzM1ZXY0KC5MvpQsk4uBAEi1KhOwJw1DTQ0RGDgniDeaLekEALIIFWDR49wsWLuRvsnkKfZbC9A+TKqM79+8s6hS3R44eJiaAVDE/W/HTzJtrYiFgY0aT4afz4en0N0lpez8eZ4YUOgLkrnQXVA+DBf8H/CowqA20EKAHd0+D6LRzasooWMiuYJrKKg2hG9OsHO3dCevrj/4bnQYftsDwduv7R5hs7iGYs+RDn0SPw94eRI2u/yMaNsHkzaGmJGJOSICmJd9y9Ozg5ieTa2kJcHPj6QkyMiD01VfIlbG1rb0YNjB4t2d6lC9NSWQl5ebJWK75sw88PAKATZE+FXw/B9HTo+gDM/WFVZ3i7GxaOgcsdIO9zOB0O3w4a20H29hONTwMJfwNBI2iVo6QE7x99nD9tCXdA/VLDdAVs1YecGobGjo4S3FOIJ/FlGNx05ozg6tnZvBW+I0ZgYCBWV+O1azINzwHQ1VWC/406ceaMhGq9vUXKVFXxtmUCoJ2dTBPCy5cLamsFRc5wfhssvw/m1cBCgGzo+CtMmQ4H+7TJYFx67dp6dYeQSIOOoDVql3CCqAe6umA+tS9MDYRyPzhxonTR/q3vVm6CHy+B010YFAeW8TAwEwyFT2nXDkpKoF8/ePxYarX9+sHx45KzevUSHHfsCKGhEBoqsGRmSjhl9GgYOJC3hNnGBnr2hFevoLAQNmwAb29o2VKkcFYW7N0Lb96AtTXMng2amlIbOWkSREXBgQOQlgaI0KMHjB8PkyeLlNm6FXbv5h1HR8OSJXD1KmhrS60T8vM3ONw3/fNhi6cPzeFBf3jUAtjloP0X2P4Im67A6DiwrAY1ALj1B3A48PYt9OgBFRXwySdgaCi9WkI5aSDhbyBoBK3q2NujGSTsgKVPoQ8H1LhDu0yW4R8wfj34uMLpHpBy/XotY9vevaUGzHZ1lXrpd+/w/XtMTGSeYmzMC2hdWYk5ORgSIpI7ebJIJW/eiOQ6O9c3IKp4XCuRRR1VVfjkCf72G/7wAzo7Y7du/HJsfYOCwWMqVq7GK1c8vigVrmHLFlncehOKgUbQRNNhyBDYcsNsGexYBjtaQbHn4Gd7v0/Q/yfW4kLsmNf+LaorAIAzsc1t6BcLVtz0FD7lDgm5DBwIZ8/Cpk0SKu/XD06elGDPyoI5c+CPPwAAJk2CNWtg40ZeVvv20L07BARARgaUlYG+Ply7JnJuRATs2QP6+ryPe/aI5F64ADduyDRjLg11dZGPbeBdu4RH8OAJJCRAbCzEx0NpKQCAhgb07g02NmBmBlZWYG2tYWjY9sNZYXZgewBu3QJ9fViwAPr0kb89hFJBAk18VH76Cd6/h+BgAAB7l1ardlmBkZXGtGldAaC8HB4+hPj4khtxWr/FzYMQLagAgHfQ5j5YxIFlHFgO/c5yQaCpWgt1T08ICRGpecoU2LaNqXcA8OwZTJkC8fG8j2fPgpYWJCXBjh2wezfk58ONG3DjRk1tzssTCHRyMjNX3CIr+fnw6tWKbkmWkNQLXppAUi942QUyYBYAAHTuDAMGwHffwYABMGAAmJlBixbSamrRAubPh/nz5W0JoayQQBMfFS0t2LsXdu2CqirmAgzQ1obBg2Hw4NZzYU0BXL/E7gsJlhBnCXHOhvEj3u1nlZbAXoDwlmBubjtw4KNllvvuWJyOMRg9RX/dZk0jIwmXCwmRIFsREXD0KDx9Kmubr14FU1Pesbk5/PabSK65ufQzS0ogLQ3evoU3byArS/BvZiZvxA4wCmAUQDp0fQm9nvYYq+Xep4OjOQwYAAYGsraPaLqQQBONgLq6hKEuHxYLfvkF1qxpERJi0d7RwmbKzJ6zATgcePYM4uIgLg7i4+GXX/q927MbYDcAHAP4ozV07AgdO4K+PnTowP23XK/TxUX6w0E/DzpUgMj/Bmrv2sVdg3ai120NRRpQpQUVulAKAO2gAAB0oTQ3uALaV3G9DS2vft/emJP+ildmeN+CQaEAO0ugshLKyqCkBN6/h/fveQfFxSIXaNUKunUDAwOwsQEDA+jaFXr2BBMTMDHpqqPTVSHfLNG0IIEmlBF9fdi3D/btEzKpq4OZGZiZ8ZyqIUJSEjx+DNnZkJMDeXmQmwt5eZCTAwkJkJsLxcXaAKelXgDyZW9NAsBU3qEmwFwAAEA1dU5LPY0MgIutQUMDtLRAVxdatwYDAzAxgbZtoVUrMDQEAwOeKHfrBq1a1fmLIJo3JNCEasJiQa9eIkvqGFRU5CbmjrLI1YfcjpCjB++5Znt7cHMDLS0oKoKQEHjxAgCgNRQVQysEVhnolIM2B9Tfgx4AFEHrKtAY46K5eWdLAIB27QAAdHVBS4tFDw/R8NDfGNFE0dLSN+9qM7+r8DD81i0YPpx33Bpg+TJwd4cTJ5inTp0Kv//KO3ZwgCWhAJ0bvsEEIQYJNNGU2bMHhg2Da9dATw/mzIH+/UVy1dTg11/B0REuXgQdHZg+HUxNoVMn0NWF0FB4+BC0taF/f1AjhwhEI0ECTTRl1NTA0xM8PaUW0NCQvEBNRweGDGnQphFE7dDYgCAIQkkhgSYIglBSSKAJgiCUFBJogiAIJYUEmiAIQkkhgSYIglBSSKAJgiCUFBJogiAIJUXFNqq0adNm8+bNp09L9YFTH5KTk3NycjQ0VOw7qT9sNhsAWkh3N9xUqaqqQsRm2HEOh8PhcDRriNbVROFwOHp6eqZ877GKIC0tTUdHR4EVCsNCrCXKcvMhMDDQyMjI1dW1sRvysTlw4ICmpqZnDfvtmignTpzIzs7+/vvvG7shH5uLFy/ev3//hx9+aOyGfGz++uuvP//8cyM/oI7SQ1McBEEQSgoJNEEQhJJCAk0QBKGkkEATBEEoKSTQBEEQSgoJtAB1dXX1GkKZNl2o482NZttxNTU1NZWKv0DL7ASUl5draGg0w3XQFRUVLBarGa6KZbPZHA5HW1u7sRvyseFwOJWVlQ23eldpQcTS0tKWLVs2dkNkhQSaIAhCSVGl0T5BEESzggSaIAhCSSGBJgiCUFJIoAmCIJQUEmiCIAglhQSaIAhCSSGBJgiCUFKa3aaM69ev37x5k/9x/vz5BgYGAJCYmHjlyhU9PT1XV9c2bdpwcyUaVY60tLSDBw+uXLlSV1eXa2Gz2ZGRkampqcOGDRs6dGhdjaoCo+OI+NNPP/Fz+/Tp4+7uDk2u42w2+/fff09LS7O2tra3t+cbm8Mdv379elxcXPfu3d3c3Lg7zsLCwl6/fs3N1dbW5rvAjo6Ojo2NNTExcXFx4W+qlGhsXJrdCDoyMjI2Nlb7A9x9nzExMQ4ODllZWVFRUTY2NuXl5dKMKsf58+ednZ3XrVtXWlrKN7q5uR04cKCoqMjDwyM8PLyuRpVAvOPv3r3bsmUL/9bzd042pY5zOJyRI0cePHiwtLR01qxZmzZt4tqbwx1fvXr1woULS0tLg4ODnZ2ducagoKCCggL+Tecat23btnDhwuLi4sDAwNmzZ9dgbHywmTF9+vTQ0FCG0cXFJSwsjHs8bty4Q4cOSTOqHHPmzMnMzFRXV8/JyeFa7t2717NnT260p3/++cfIyKhORlVBvOMpKSndunVjFGtiHb97966lpSWHw0HE6OhoY2NjbB53nM1m9+jRIzk5GRHLysp0dHRev36NiEZGRi9fvmSUbN++fVJSErdkhw4dUlJSJBoboRtiNLsRdGFhYVVV1cGDBw8fPpyfn881xsTEODo6co/t7e1jYmKkGVWO/fv3c+dw+MTExNjZ2XF/wQ0aNCg7OzsrK0t2Y6P0Qg7EO15YWNimTZubN2/u2bPnr7/+4hqbWMetra1jY2O5vwsrKyu5Tieawx3X0NBISUkxMjICAESsrq7mehopLCzMzMwMDg4+c+ZMVVUVACQmJurp6RkbGwOAtrb24MGDY2JiJBobsz8faI4C7e/v//Lly8jIyP79+2dlZVVXV+fl5enr63MLdOrUKTs7W6Kx8VqtSLKzs/n9YrFYHTt2zM7Olt3YOI1WBIWFhYmJiXv37n3z5s3XX3+9fv16qMu30WjtlovKykpfX99ly5ZB87vja9eu/frrr/X19RHx/fv33t7emZmZmzdvHjt2LCIK9xE+PNoSjY3RdibN7iXhsWPH9PT0uG+N3N3d9+7d6+vrK1wAEVkspg8prvGjNvRjIbFrshtViCFDhrx+/bpLly4A8O2335qbm69atYpRpml0vLi4+PPPPx82bNiMGTPEc5v2HV+9evXdu3fPnz8PACwWKykpqXv37mpqamvWrPnkk0+ioqIY5ZW8481uBG1gYMBfzGBpaZmamqqurq6vr5+Zmck1ZmRkGBoaSjQ2TosVTefOnfn9qqqqys7ONjQ0lN3YOI1WBNra2lx1BoA+ffqoq6tnZmY2vY4XFRU5OjqOGjUqICCAa2k+d3zBggWJiYkXL17kOxQ1MjLiTvhoamr27ds3NTVVuI/w4dGWaPzIjZfMx5/2blzc3NwSEhK4x19++eXGjRsR0dXVddeuXVzj0KFDjx8/Ls2oogi/K7t//76BgUFlZSUi/vnnn59++mmdjKqFcMf/+OOP5cuXc48fP36sq6tbWVnZ9Do+adIkf39/YUszueM7duyYOHEi9w0nl7S0NGdn54qKCkSsqKjo2rXr7du3q6qq9PX1Hz16hIgFBQUtW7bMyMiQaGysjgjT7KY4zM3NJ0yYMGPGjMTExHv37oWEhACAt7e3s7NzVlbW8+fPKyoq3NzcpBlVi7Kysp07dwIAIgYFBenq6i5atMjc3NzGxmbcuHHDhw8PDQ0NDAwEANmNKoHEjltbW8+dOzcvL8/Y2PjQoUPr169v0aJFE+v4jRs3rl27NmTIED8/P65lyZIlzeGOv3v3ztfXd9asWfzfDZ9//nnv3r0rKiqcnJxGjx598eJFS0tLW1tbAFizZo2bm5uHh8f58+dnzpzJHSxLNDY6zdFhf3R09N27dzt27Ci8/eTp06dXrlxp27atm5tbq1atajCqEKWlpf7+/sKWlStXtmrVis1mnzlzJi0tbcSIEdbW1tws2Y3Kj7SO5+fnnzp1qqioyMbGxsbGhpvVlDoeFxcXGRkpbFm1apWurm6Tv+P5+flBQUHClsmTJ5uZmVVVVf3+++8pKSm9e/eeOHEiP97VjRs3YmNjTU1Nx48fz59ulmhsXJqjQBMEQagEze4lIUEQhKpAAk0QBKGkkEATBEEoKSTQBEEQSgoJNEEQhJJCAk0QBKGkkEATBEEoKSTQBEEQSgoJNEEQhJJCAk0QBKGkkEATBEEoKSTQBEEQSgoJNEEQhJJCAk0QBKGkkEATBEEoKSTQBEEQSgoJNEEQhJJCAk0QBKGkkEATqgE3Dqyrq6uLi8uPP/6YkZFR1xoKCwtfv34tS0lvb+8rV64wjGvWrGEYV6xYcfjwYf7H48ePL1q0qK6tIogaIIEmVICysrIRI0YcO3Zs0qRJc+bMSU9Pt7KySk5OrlMlJ0+e/PXXX2Up6ezs3Lt3b4bx8ePHb9++FbZMnz59xYoVaWlpAJCTk7N48eJvv/22Tk0iiJrRaOwGEETt7Nq1q7y8PDY2VlNTEwAmTZrk6+ubkJDQs2dPAAgLCzt37pyWlpaXl9fAgQMB4Mcff7Sxsbl06dKrV6/GjBmzZMmS27dvb9iwQV1dncPhlJSUWFpaRkRErFy5ctCgQfv27bt8+XLr1q1nzZplZ2cHABcuXHB0dOzRo0d5eflPP/304MGDsWPHireqf//+S5cunTdv3oULF5YuXTpz5kwVCoNNqAZIEErP8OHDg4KCJGYFBQVZW1s/ePDgwoULXbt2TU9PR8QvvvjCysrqxYsXmZmZXbp0+ffffysqKmbNmuXj41NUVOTm5mZtbX3t2rXCwkI/Pz9bW9vHjx9fvXq1Q4cOjx49QsTx48cfOXIEEZctWzZ+/PjExMS9e/e2bduPOh2SAAAC6ElEQVSWaxSGzWZbWVnNnj37008/LS8vb+CvgWh20BQHoQKkp6ebmJhIzNq1a9eGDRsGDBgwbtw4Z2fnY8eOce1ubm69evUyMDCwtrZOTEzU1NTU1tbW1dVt1aoVi8UaM2aMo6NjmzZtwsLCNmzY0Ldv35EjR7q7u/NP53L69GkvLy9TU9MFCxZ07dpV/OoaGhp+fn6hoaE+Pj5aWloK7zjRzKEpDkIF6NixY35+vsSsN2/ebN26dd++fQDw/PlzDQ3en3SnTp24By1atKioqGCc1b17d+5BWlqasbEx97hnz54PHjwQLpaZmdmtWzfGKQy2b98+YcKEbdu2TZ48WV1dva5dI4gaIIEmVABzc/PLly97eHjwLfHx8erq6gMGDGjfvv13333HF9n27dvLUiFfSVu3bl1WVsY9Lisr09PTEy6mo6PDF/eioiLxeg4cOFBcXBwdHT1u3LitW7d6eXnVsWcEURM0xUGoACtXrjx+/Pgvv/zC/fjq1asvv/zy8ePHADBs2LCMjAwLCwsLC4uUlBTxwTIfNTW1qqoqhnHo0KF//vknACDixYsXBw8eLJxrZmZ2+/ZtAMjNzY2NjWWcm5aWtnr16p9//pnFYgUHBwcEBLx48aLefSUIATSCJlSA3r17Hz16dMGCBd7e3p07d05OTvbx8Zk6dSoAbNq0aeLEiVevXq2srMzIyLh69aq0Svr27bt27dri4mJho5+f36RJk+7cuZOWlqavr8+tk8+aNWs8PDwuXLjw9u3bQYMGIaJw7qxZsxYvXmxqagoAPXv29PLymj17dnR0tCJ7TjRvWIy/OYIgCEJJoCkOgiAIJYUEmiAIQkkhgSYIglBSSKAJgiCUFBJogiAIJYUEmiAIQkkhgSYIglBSSKAJgiCUFBJogiAIJYUEmiAIQkkhgSYIglBSSKAJgiCUFBJogiAIJYUEmiAIQkkhgSYIglBSSKAJgiCUFBJogiAIJYUEmiAIQkn5PwYgDKV5cJvAAAAAAElFTkSuQmCC", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "%%R\n", "# quick visualization of the B cells and the convex hull\n", "plot(\n", " df_subset$centroid.1, df_subset$centroid.0,\n", " xlab = \"Centroid X\",\n", " ylab = \"Centroid Y\",\n", " main = \"B cell centroids with convex hull\",\n", " pch = 19, col = \"blue\"\n", ")\n", "lines(cvxhull$bdry[[1]], col = \"red\", lwd = 2)" ] } ], "metadata": { "kernelspec": { "display_name": "tmp_env_3", "language": "python", "name": "tmp_env_3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.10.0" } }, "nbformat": 4, "nbformat_minor": 5 }